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Abstract: 
This paper describes a stability analysis of anisotropic 
bearing stiffness effect for improving damping character­
istics of a two-axes controlled rotor by magnetic bearings. 
The method of averaging is applied for simplifying the 
mathematical model of tilting motion of the rotor. The 
anisotropic stiffness effect is found to be efficient for im­
proving the damping characteristics but it depends on 
the ratio of moments of inertia of the rotor. 

1 INTRODUCTION 

The use of a magnetic bearing system provides many re­
markable benefits such as friction-free rotation, reduc­
tion of energy consumption, long life time, and high 
reliability. Recently research and development for in­
troducing a magnetic bearing system into a industrial 
machinery system becomes increasingly popular. Five 
types of magnetic suspension utilizing attractive force 
between stator and rotor can be categorized according to 
the actively controlled degrees of freedom. Each type has 
its .own advantages and disadvantages. Generally speak­
ing, complexity in the control electronics increases with 
the number of the actively controlled degrees of freedom 
(hereafter referred to as "axis"). Of the five types, the 
two-axes controlled magnetic bearing system as well as 
the one-axis controlled bearing system has attracted in­
tensive attention due to its simplicity and compactness 
of structural configuration (1,2). 

As shown schematically in Fig.1 a two-axes controlled 
magnetic bearing system contains the active control 
along the radial two axes in the midplane of the rotor. As 
pointed out earlier(2), this design of the electro-magnet 
is fitted to the flat rotor configuration. But many dif­
ferent configurations shall be investigated to expand its 
application area where its benefits of affording the wide 
variety of the bearing stiffness are enjoyed along the ac­
tive controlled axes. For example, a slender configura­
tion of the rotor shall be investigated to apply it to a 

turbo-machinery. One of the problems we should cope 
with for applying the two-axes controlled type to a slen­
der configuration is to maintain the limiting speed of' 
rotation above the required operational speed of rota­
tion. As already pointed out, the motion stability of the 
rotor along the passively stabilized axes decreases with 
the rotational speed, which means the tilting motion of 
the two-axes controlled rotor may become unstable with 
increasing the rotational speed. We treated the same 
kind of problem at one-axis controlled rotor(3). The ro­
tor contains an acti vely controlled axis only along the 
rotational axis in the one-axis controlled magnetic bear­
ing, where the rotor motion in the four axes, the transla­
tional motions along the two axes and the tilting motion 
around the two axes, is passively stabilized. One of mea­
sures for maintaining the passive motion stability up to 
high speed of rotation is to introduce anisotropic bearing 
stiffness effect (3) . The analysis to predict the anisotropic 
stiffness effect to stabilize the whirl motion of the rotor 
was conducted applying the method of averaging. The 
anisotropic stiffness effect will work also in the two-axes 
controlled rotor for increasing the stability of its tilt­
ing motion, that is expected. The analysis conducted in 
this paper to predict the anisotropic stiffness effect which 
causes the increase in the stability of the tilting motion, 
utilizing the method of averaging. 

First, modelling of the tilting motion of the rotor 
is conducted assuming a rigid rotor with a elastic sta­
tor. The anisotropic stiffness effect in the elastic sta­
tor is transferred into the bearing stiffness anisotropy. 
The method of averaging (4) is applied for simplifying 
the mathematical model which describes the dan1ping 
characteristics of the tilting motion of the rotor. The 
anisotropic stiffness effect is found to depend on the ra­
tio of the moment of inertia of the rotor, different with 
a case of the one-axis controlled rotor, because the gy­
roscopic effect essential in the tilting motion works as 
a stabilizer of the whirl motion. Lastly, the design to 
realize the anisotropic stiffness effect is discussed. 



2 MODELLING 
Figure la shows schematically a two-axes controlled ro­
tor. The rotor is suspended by the magnetic bearing and 
can move without contact within the gap clearance of the 
bearing. The rotor structural stiffness is assumed high 
enough for it to be treated as a rigid body. Then rotor 
motion may be separated into a motion of translational 
mode and that of tilting mode. The translational mo­
tion is dropped in the following sections, because that 
is actively controlled in a two-axes controlled magnetic 
bearing. The damping characteristics in the passively 
stabilized axes can be deduced with only the tilting mode 
motion. The stator is tilted elastically around x-axis and 
y-axis. The stator tilts at ((J~, (JT/) due to the elastic de­
formation from i,ts nominal position. Figure Ib schemat­
ically defines tilt angles of the rotor. The rotor tilts at 
((J;:&, (Jy) due to its whirling' motion. The equations of 
tilting motion of the rotor are described as 

.. ", 2 
(Jy + 2(00 + Oi)(Jy -II:O(Jz - 21\O(Jz +we(Jy +Q(JT/ = 0 (lb) 

where Oz, Oy, 0;:&, and Oy are the first and second deriva­
tives of x and y with time, respectively; the other sym­
bols are defined as follows: 0 is the angular speed of 
rotor, We is the critical speed of rotor caused by finite 
bearing stiffness, 00 is the damping factor due to eddy 
current loss in the stator, 0i is the damping factor due to 
eddy current loss in the rotor, II: is the ratio of moment 
of inertia (Iz/ I z or I z/ Iy), and Q is the reaction factor 
due to stator deflection. The terms 0i and 00 represent 
electromagnetic induction effect related with the rela­
tive speed between the rotor and the stator. The terms 
20i O(Jy in Eq.(la) and -20i O(Jz in Eq.(lb) represent the 

~ coupling effect where tilt angle in the one axis induces 
another tilt ane;le in the other axis du~ to the rotation. 
The terms II:O(Jy in Eq.(la) and -II:O(Jz are called the 
gyroscopic effect. Their effect will be re-examined later 
in more detail. The terms Q(J~ in Eq.(la) and Q(JT/ in 
Eq.(lb) represent the coupling effect between the rotor 
and the stator due to tilting. The equations of tilting 
motion of the stator are described as 

.. • 2 
(JT/ + 20r (JT/ + way(JT/ + Q' (Jy = 0 (2b) 

where O~, OT/' O~, and OT/ are the first and second deriva­
tives of (J~ and (JT/ with time, respectively; the other sym­
bols are defined as follows: W s;:& and W sy are the mode 
angular frequencyof the stator along the x-axis and y­
axis due to its structural elasticity, Or is the damping 
factor of the stator due to its elastic deflection, and Q' 

is the reaction factor due to the rotor tilt. The sym­
bols Waz and Way are distinctive to each other to prepare 
for the introduction of the anisotropy of the structural 
stiffness in the stator. The anisotropy of the structural 
stiffness will turn out later to be equivalent to that of 
the bearing stiffness. The terms Q' (J;:& and Q' (Jy represent 
the tilting restoring force effect due to the rotor displace­
ment. Eqs.(la-2b) describe the motion of the rotor and 
the stator considering the anisotropy of the stator struc­
tural stiffness. 

Fig.la Configuration of a two-axes controlled wheel. 
z 

y 
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Fig.lb Definition of tilting angles of the rotor. 

3 STABILITY ANALYSIS 

3.1 Isotropic stiffness 

Taking the stiffness of stator as infinite, Eqs. (2) are dis­
carded, and (J~ = (JT/ = 0 are assumed in Eqs.(l). The 
remaining equations represent the motion of the rotor 
suspended by isotropic bearing: 

•. •• 2 
(Jy + 2(we(Jy - II:O(Jz - 2(iWeOOz + WCOy = 0 (3b) 

where (, (i are defined as (00 + oil/we, odwe. The cou­
pling effects are expressed explicitly in the last terms in 
Eqs.(3a) and Eqs.(3b). To obtain an approximate s0-

lution for the dynamic characteristics of the rotor, the 
method of averaging is applied as follows. 

The homogeneous equation of Eqs.(3) are 

(4a) 

(4b) 



Eqs. (4) are transferred as follows; 

where 111, G, and K are defined as 

o 
-d1 

F\lrther, Eqs. (5) are tr tlnsferred as follows; 

where M o , Go are defined as 

[ K 0] G~[O 
OM' o~ f{ 

-f{ 1 
G 

(5) 

The eigenvalues of the homogeneous solution are de­
scribed as 

(7) 

To obtain an approximate solution of Eqs.(3), we transfer 
the variables Ox, Oy to a harmonic functions with W2 such 
as 

Ox = b(t)eiw~t + b* (t)e--jw,t 

Oy = _j{b(t)eJWJt - b' (t)e- jWJt } 

(8a) 

(8b) 

where b' denotes the conjugate complex variables of b. 
Inserting Eqs.(8) into Eqs.(3a). Neglecting the terms 
with ii, ii', and the other high-order terms, we obtain the 
following equation by multiplying the remaining terms 
bye-jw,t: 

+ J(u*, a* )e-2jw,1 = 0 (9) 

where J is the linear function of iJ.*, a'. The sixth terms 
in the left side of Eq.(9) are of the same magnitude as 
others. The sinusoidal function has a frequency 2u>.z. 
\\Then focussing the slow variation of u, we can elimi­
nate the last term on the left side of Eq.(9) by averag­
ing them over the period (lljW2)' This approximation is 
valid for the frequency below (~/1T). Then we obtain 
the following Equations, which approximate Eq.(9): 

We obtain the real part denoted by A of the eigenvalue 
of the system such as 

(11) 

£.1 

Immediately we can find the following relation when 11 
becomes to infinity 

(12) 

The imaginary part of the eigenvalue is assumed to be 
±W2, because when using them in Eq. (8), and then 
Eq.(l1) represents the damping factor. From, it is found 
that the lower value of the damping factor decreases with 
the angular speed of rotor 11 and it becomes negative be­
yond the boundary angular speed at which the right side 
becomes zero. When K > (if (, the real part of the eigen­
values is negative. Then this motion is stable. But, when 
K < (i/(, the real parts of the eigenvalues will be posi­
tive. Then the limiting speed of the rotor stabilization 
exists. Eq.(12) shows that the internal loss OJ causes 
decrease in the limiting speed. 'Ib increase magnitude 
of the limiting speed, we must increase We or increase 
00 , because a'> a practical matter we cannot decrease I5 j 

below some minimum value. An example of damping fac­
tor variation of a isotropic rotor with rotational speed is 
shown in Figure 2. As shown in Figure 2, when I\, 2: 0.5, 
the damping factor is positive at all times. Then the 
motion is stable. 

D. 1--·0.1 L-______________ .....J 

o 20 40 60 80 100 120 140 
Q( Hz) 

Fig.2 The damping factor variation of the isotropic ro­
tor with rotational speed. (we = 140 (rOO/s), ( = 0.1, 
(j .ccc 0.05 ) 

3.2 Anisotropic stiffness 

Eq.(ll) has been deduced on the assumption of isotropic 
bearing stiffness. The reason why the damping factor 
decreases with 11 is explained with that the isotropy of 
bearing stiffness helps the growth of rotor whirling mo­
tion through a tight coupling effect between x and y axes 
of freedom of the motion, and a rotational energy of the 
rotor may be poured to the whirling motion. It is pointed 
out that the anisotropy of bearing stiffness prevents the 
internal loss factor from decreasing the mode damping 
factor(3). We formulate this effect from Eqs. (la-2b). 
Now, we transfer O( to the following approximate equa­
tion focussing on Eq.(2a). 

Of, = J(t)dWJ1 + r(t)e-jw~t (13) 

where r (t) is the conjugate complex of a function to be 
determined, J(t). Inserting Eq.(13) into Eq(2a), we can 
obtain the following relation on J(t) after neglecting the 
derivatives of J(t): 

0:' 

J(t) = - w 2 _ w2 + 2J'w 15 bet) 
rx 2 2 r 

(14) 



After using Eq.(14) in Eq.(I3), and also Eq.(7), and ne­
glecting the derivatives of bet), we can obtain the follow­
ing expression: 

After introducing Eq.(15) into Eq.(Ia), we finally obtain 

Ox + 2 {60 + ( 2 ~' 2)2 6r } Ox + 2MOx + noy + KnOy) 
Wrx W2 

( aa') + w; - 2 2 Ox = 0 
Wrx -W2 

(16) 

'Th compare the factors in this equation with the corre­
sponding factors in Eq. (1), we must modify We and 00 as 
follows: 

The modification of 6..oox and 6.ooy are practically neg­
ligible, because Or cannot be large. The anisotropy of 
structural stiffness in the stator can be transferred into 
that of the bearing stiffness. So, we replace We with Wex 

and Wey as follows: 

The following equations express the modified equations 
of the rotor motion considering the anisotropy of bear­
ing stiffness which can be caused by the structural 
anisotropy: 

.. .• 2 
(}y + 2(Wex (}y - KnOx - 2(iWexnOx + WeyOy = 0 (20b) 

where (, (i are defined as (00 + 6d/wex, 6dwcx, respec­
tively. The transfer of the variables (}x and (}y with the 
harmonic function of the angular speed Wx2 is executed 
by the same way as in Eq.(9), . 
(}x = c(t)dwlt + c·(t)e-iwlt , (}y = d(t)dwlt + d'(t)e-iwlL 

(21) 

(22) 

Inserting Eqs.(2I) int.o Eqs.(20), and neglecting c, d, c', 
d:, and the other high-order terms, we obtain the fol­
lowing equations by multiplying the remaining terms by 
e-iW",lL. After applying the method of averaging, we ob­
tain the following equations relating c and d, 

The characteristic equation is described as 

A2 + {2(wex + j(Kn - 6.')}A 

{ 2 ( Wex ) 2 Kn '} + «(Wex ) - (in Wx2 + 26.. 

+j {Kn ((Wex - (in:::) -6..'(Wex } = 0 

where the following notations are defined, 
2 2 n 2 2 n Wex -Wx2 K Wey -Wx2 = 6.. Wex _ ~ 

2wx2 - 2' 2wx2 Wx2 2 
2 2 

6. = Wey - Wex 6.' = 6.. Wex 

2wex Wx2 

We obtain the eigenvalue A of the system as 

A = -(wex + j (~' _ K~) 

± ( )2 (A,)2 Wex K ~ 
(i- +j- n2 - -

Wx2 2 2 

(24) 

(25) 

(26) 

The real part of the eigenvalue, that is the damping fac­
tor €, is modified as follows: (1) At n = 0: 

6.' 6.' 
A(n = 0) = -(wex + j2" ±j2" (27) 

When focussing only on the real part of Eq. (27), 

(28) 

Then, this motion is stable, because the real part of the 
eigenvalue is negative. (2) With 6..' = 0, that means the 
isotropic stiffness. Transferring Wex , Wey to We; 

(29) 

Then, Eq.(29) agrees with Eq.(ll). (3) The following 
relation will be obtained, focussing only on the real part, 
with n -t 00, 

E(n -t 00) = -Wex (( - (i~) (30) 
Wx2 

Then, the anisotropic stiffness and the isotropic stiffness 
have essentially the same effect. The damping factor 
variation of the anisotropic rotor with rotational speed is 
shown in Figure 3. As shown in Figure 3, when K ;::: 0.5, 
damping factor is positive at all times. Then, this motion 
is stable over the whole range. 
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Fig.3 The damping factor variation of the anisotropic 
rotor with rotational speed. (wex = 140 (rad/s), Wey = 
100 (rad/s), zeta = 0.1, (i = 0.05 ) 



4 EXAMPLES OF STABILITY 
PREDICTION 

In case of K = 0.8, the approximate solution compared 
with a exact solution is shown in Figure 4. As shown 
in Figure 4, it is found that the approximate solution 
is effective for predicting the characteristic of the exact 
solution in wide range. 
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FigA The approxjmate solution compared with the ex­
act solution. (K = 0.8, W= = 140 (rad/s), Wcy = 100 
(rOO/s), <; = 0.1, (i = O.OS ) 

In case of K = 0.8 and 0.1, the anisotropic stiffness 
effect on the damping factor is shown in Figure 5a and 
Figure .5b. As shown in Figures 5, the anisotropic bearing 
stiffness improves the damping characteristics in higher 
rotational speed for the rotor which has the lower ratio 
of the moment of inertia. 
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Fig.5a The anisotropic effect to the damping factor. 
(K = 0.8, Wc;r: = 140 (rad/s), we)} = 100 (rad/s), (= 0.1, 
(i = 0.0.5 ) 
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Fig.5b The anisotropic effect to the damping factor. 
( K = 0.1, W= = 140 (rad/s), we)} = 100 (rad/s), <; = 0.1, 
(i - 0.05 ) 

The relation between the ratio of moment of inertia K 

and the critical speed is shown in Figure 6. As shown 
in Figure 6, it is found that the rulisotropic stiffness ef­
fect becomes large, as the ratio of moment of inertia K. 

becomes lower. On the other hano, when the ratio of mo­
ment of inertia K. is enough high, t.he anisotropic stiffness 
elTect is small. 
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Fig.G The critical speed variation with the ratio of the 
moment of inertia. (wex = 140 (rad/s), Wcy = 100 
(rad/s), ( = 0.1, (i = 0.05 ) 

In case of Wey = 40, 90, HO, and 190(rad/s) for 
WeI = 140(rad/s), the damping factor variation of the 
rotor with rotational speed is shown Figure 7. 
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Fig.7 The damping fador variation with rotational 
speed. (K. = 0.8, WeI -= 110 (rad/s), Wcy = 100 (rarl/s), 
(-= 0.1, (i = 0.05 ) 

The relation between the ratio of anisotropic stiffncs..c; 
and the damping. factor is shown in Figure 8. The re­
lation between t.he ratio of anisotropic stiffness and the 
critical speed is shown Figure g. 
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Fig.8 The drunping factor variation with the ratio of the 
ratio. ( WeI = 140 (rad/s), (= 0.1, (i = 0.05 ) 
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Fig.9 The critical speed variation with the ratio of 
the anisotropic stiffnes..').( K = 0.1, Wcx = 140 (rad/s), 
( = 0.1, (i = 0.05 ) 

As shown in Figure 8, it is found that the damping 
factor increases with the difference of bearing stiffness 
and the anisotropic effect of the rotor with the lower 
ratio of the moment of inertia is larger than that with 
the higher ratio of the moment of inertia. As shown in 
Figure 9, it is found that the critical speed increa..<;es with 
the difference of bearing stiffness . 

5 DESIGN FOR OBTAINING 

ANISOTROPIC STIFFNESS 
As discussed in the preceding section, the anisotropic 

bearing stiffness improves the damping characteristics at 
the higher rotational speed for the rotor which has the 
low ratio of the moment of inertia. The designing method 
for obtaining the anisotropic stiffness is investigated in 
this section. 

We assume that the natural angular frequency Wcx , Wcy 

representing the bearing dynamk stiffness is propor­
tional to the natural angular frequency w~x' W~y repre­
senting the bearing static stiffness as follows, 

(31) 

Accordingly, when the difference. of the static magnetic 
bearing stiffness w~x' w~ become larger, the anisotropic 
stiffness will be larger. l'igure 10 schematically shows the 
restoring force of the magnetic bearing due to the tilting 
motion of the rotor. Where fu, fLare magnetic attrac­
tive forces between the rotor and the stator, when the 
rotor tilts at small angle O. We assume that the magnetic 
attractive forces fu, fLare concentrated at the teeth of 
the upper and lower parts, and they have a radial force 
f1'u, f1'L, and an axial force fzu, fzL, respectively. Then, 
the moment M due to the magnetic attractive force is 
described as (defining a positive angle counterclockwise) 

M - (J1'L - f1'u)lz ~ (JzIJ + fzu )Rm (32) 

The magnetic attractive forces are described as 

fu = fa - kO, h = fs + kO (33) 

where fs is the static magnetic attractive force and k is 
a tilting spring constant. Neglecting ok terms, we obtain 
the following equation: 

M = 2(klz - fsRm)o (35) 

Restorability from the the tilting attitude of the rotor 
means 

dM 
dO = 2(klz - faRm) < 0 (36) 

As the derivative -aM / ae means the static bearing stiff­
ness, then, when the different value of 8M/80 is realized 
around x-axis and y-axis, we can obtain the anisotropic 
bearing stiffness. 

Fig. 10 Definition of restoring force. 

6 CONCLUDING REMARKS 
The anisotropic stiffness effect to the stability char­

acteristics in tilting motion of a rotor which is actively 
suspended in two radial axes by the magnetic attractive 
force is analyzed by utilizing the method of averaging. In 
the result, the anisotropic stiffness improves the damp­
ing characteristics at higher rotational speed for the rotor 
which has the lower ratio of the moment of inertia. 
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