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Abstract: The relationship between current and force 
in magnetic bearings is typically inverted via bias current 
linearization. This work considers an alternate inverse 
strategy based on minimizing the power required to pro­
duce a given force while accommodating slew rate lim­
itations of the actuator. Continuation techniques are 
used to obtain an inverse mapping between forces and 
currents. Specifically considered is an 8-pole magnetic 
bearing with an independently controlled coil on each leg. 
The result of this method is decreased power consump­
tion by the bearing. A method of electrically decoupling 
the coils, crucial to the practical implementation of in­
dependent coil control, is also considered. 

1 Introduction 

Many magnetic bearings employ a bias linearization 
scheme to invert the relationship between current applied 
to the bearing's coils and resulting force [1]. However, 
requiring a linear relationship between desired force and 
currents is overly restrictive; an actuator need not have 
a linear inverse for all desired forces to be realizable. In 
addition, bias linearization does not necessarily yield an 
inverse with optimal performance in terms of maximiz­
ing bearing load capacity or minimizing resistive power 
losses . 

An alternate philosophy for choosing a particular in­
verse is to select the solution that optimizes some mea­
sure of performance while also realizing the desired 
forces. For the inverse to be realizable with a finite cur­
rent slew rate, it should also have the following proper­
ties [2] : 

• All currents must go to a nominal bias value when 
the force requested is zero. This requirement avoids 
the slew rate limiting problem at low force levels if 
the bias currents are appropriately selected [3]. 

• Coil currents should be a continuous function of 
force. This requirement avoids jumps in required 
currents that would cause slew rate limiting prob­
lems away from f = O. 

• The algorithm [should be] computationally quick and 
simple. For a magnetic actuator to have adequate 
bandwidth, the throughput rate must be fast. The 
time spent solving the magnetic inverse problem 

Figure 1: 8-pole heteropolar radial magnetic bearing 

should therefore not take up a large portion of the 
sampling interval in a digital controller implemen­
tation. An inverse computed off-line and stored in 
a look-up table for real-time used is assumed to be 
adequate . 

2 Current-to-Force Relations 

The class of actuators considered by this work is charac­
terized by current-to-force relationships of the form : 

(1) 

where I E ~n is a vector of applied currents and M j E 
~n x n is an indefinite matrix relating current to force 
Fj in the ph direction . Any active magnetic actuator 
without permanent magnet biasing can be reduced to 
this form via a magnetic circuit analysis [1]. i 

Of particular interest is the case of heteropolar radial . 
magnetic bearings with an independently controlled coil 
on each leg of the bearing . By convention, each pole is 
wound with N right-hand turns of wire, and positive flux 
flows from the rotor to the stator, as pictured in Figure l. 
For symmetric n-pole bearings, it is convenient to work 
in terms of non- dimensional current, air gap flux density, 
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and force, denoted i, b, and f respectively: 
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where a is the pole area, go is the nominal air gap, and 
is th~ saturation flux density. If the reluctance of 

iron parts is neglected, the applied current vector can be 
related to air gap flux density by 

b = Vi (3) 

At zero force, i = 0 satisfies the constraints while at the 
same time producing J = O. A current of i = 0 is clearly 
the optimal solution at f = O. However, i = 0 makes 
the right-hand side of (8) equal to zero for any finite %-}i 
any requested change of force about f = ° cannot be 
realized by an amplifier with a finite switching voltage. 
This phenomenon is known as slew rate limiting [3]. 

Consider instead the cost function 

(9) 

subject to if M1 i = h 

where V is an n x n matrix whose diagonal elements are if Mk i = fk 
n;;l and off-diagonal elements are -~. Using Maxwell's where io is a bias current vector that satisfies: 
stress tensor, the flux in the air gap is related to force on 
the rotor by i~Mjio = ° 'V j = 1, ... , k (10) 

(4) and the matrix H[io] is of rank k where 

where 

~d~ag{ c~s 8 1, ... ,C?S ! 
2dIag{sm81, ... ,sm8n J (5) 

and 8j describes the placement of the ph pole. Com­
bining (3) and (4) yields the general form of the current­
to-force relationship: 

(6) 

where Mj = V' Aj V. 

3 Fornmlation of the Power Optimal Inverse 
Problem 

A natural candidate for a cost function to optimize is i' Qi 
where Q is a positive definite matrix used for weighting 
the currents relative to one another. Minimizing this 
cost would give, in a sense, the smallest current necessary 
to realize a given force. Another interpretation is that 
this cost function minimizes the resistive power losses 
necessary to produce a given force. Using this quadratic 
cost function, the definition of the power optimal inverse 
problem is: 

. J(') "0' m.In z == z ~/. (7) 
• 

subject to i'Ml i = h 

i'Mk i = fk 

However, this formulation has an immediately appar­
ent problem. Consider the change in force, *' produced 
by some change in current, ~ ~ : 

!!.1L - 2i'M di 
dt - 1 dt 

fT[ioJ = r::::J (11) 

As shown in [4J, it is possible to control an actuator with 
finite current slew rate if and only if an io fulfilling these 
conditions exists. For this cost function, f = 0 and J = 0 
at i = io; current vector io therefore must be the optimal 
solution of i at f = O. Away from f = 0, io becomes 
increasingly insignificant in comparison to i. As i gets 
larger, 

(i - io)' Q( i - io) ~ if Qi (12) 

The modified cost converges to the power-optimal cost 
for large i. 

The problem defined by (9) may be adequate if there 
is a way of solving (9) that yields a smooth inverse map­
ping. Perhaps the best way to produce an inverse map­
ping in this case is through a continuation (or homotopy) 
approach. The optimal solution is known at f = O. The 
idea is then to make small changes to i that produce a 
non-zero force but still are optimal in the sense of (9). 
Similar techniques have been used in the literature, par­
ticularly in the area of optimal power system studies [5] 
[6J [7]. 

The first step in developing this approach is to combine 
the desired force constraints into the cost function via 
scaling by Lagrange multipliers, denoted by ,\ [8]: 

(13) 

The Lagrange multipliers can be thought of heuristi­
cally as representing a relative cost of satisfying the con­
straints. For an optimum, the partial derivatives of j 
with respect to both i and ,\ must be equal to zero: 

2Q(i - io) + 2H'[i]i 
H[iJi - f 

o 
o (14) 

(8) If a small change in force is desired, i should in 
~ - 2i'M di 
dt - k dt 

such a way that the change in force is realized while still 



satisfying the optimality conditions. Let s denote the dis­
tance along an arbitrarily chosen continuous trajectory 
originating at f = 0 in the space of desired forces. A 
small change in forces can be represented now by df / ds. 

For the optimality conditions to be satisfied for a given 
df / ds, the total derivative of (14) with respect to s must 
be zero: 

(15) 

Equation (15) is a system of ordinary differential equa­
tions in s. On the right hand side, df / ds is specified by 
the choice of path through the k-dimensional space of f. 
The left-hand side can then be inverted at any particular 
i and A to yield the change in currents and Lagrange mul­
tipliers that correspond to any df / ds. An exposition by 
Bryson and Ho [9] indicates that this integration yields 
the same i and A for a given f regardless of path as long 
as the left-hand side of (15) is always non-singular and 
the initial condition is itself a minimum. 

Initial conditions must be supplied so that (15) can be 
integrated. The initial condition on current is i = io at 
f = 0, since io is the optimal solution to (9) at zero force. 
However, the Lagrange multipliers, A, are also functions 
of s, and an appropriate condition on A must also be 
supplied at f = O. The value of A can be determined 
by considering the conditions (14) at the f = 0 point. 
Substituting f = 0 and i = io into (14) yields 

o 
o (16) 

The constraint equations in (14) are satisfied at f = 0 
by definition of io. Recall that another condition on io 
is that H[io] must be ofrank k. An equivalent condition 
is that the columns of H'[io] are linearly independent. 
Since the columns of H'[io ] must be linearly independent, 
no non-zero combination of columns can add up to zero; 
only A = 0 will satisfy (16). The correct initial condition 
on A is therefore A = 0 at f = 0 so that the manifold 
tracked out of the zero force solution is an optimum. If 
some other initial condition is used for A, a manifold will 
result that satisfies the constraint equations; however, a 
manifold produced by A[O] =f:. 0 will not be optimal in the 
sense of (9). 

An optimal inverse mapping is created by integrating 
(15) numerically along many different paths heading out 
of the origin, using i = io , A = 0 as the initial condition 
at f = O. For example, in a 2-force actuator, f can be 
parameterized in terms of s and an angle () as 

h = scos(} 
h=ssin(} 

(17) 

The path is chosen so that the choice of () corresponds 
to the direction of the force, and s corresponds to the 
magnitude of the force along that direction. To create an 
inverse mapping, (15) would be integrated from s = 0 to 
some desired maximum force at a great enough number 
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Figure 2: One degree of freedom actuator. 

of (}'s so that the inverse is suitably defined in the range 
of forces of interest. 

This method relies on the fact that the inverse has 
a finite slope with respect to s to compute the inverse; 
therefore, any inverse obtained by this method will have 
the desired property of smoothness along each integra­
tion path. Unfortunately, it is not clear that the left hand 
side of (15) will always be non-singular for every possible 
set of M's and io's. However, as shown in a subsequent 
example, this method can give smooth inverse mappings 
in the practically important case of 8-pole radial mag­
netic bearings. 

4 One Degree of Freedom Example 

As an example of the method, consider the 1 d.o.f. prob­
lem resulting from two opposed horsehoe magnets acting 
upon a mass, as illustrated in Figure 2. The current-to­
force relations for this actuator are characterized by: 

(18) 

The solution that optimizes ir + i~ is 

i1 =..,fJ; i2 = 0 f > 0 (19) 
i 1 = 0 i2 =..,fJ ; f < 0 

However, this solution prescribes zero current at zero 
force, leading to slew rate limiting at low force levels. In­
stead, the continuation approach can be applied to yield 
a low-power solution that avoids slew rate problems. For 
this example, one can choose 

(20) 

as a biasing vector where c is a constant that scales the 
magnitude of the vector. The cost function to be opti­
mized is given by (13): 

j = (il - c)2 + (i2 - c)2 + A(ir - i~ - f) (21) 

Taking derivatives with respect to i 1 , i2 and A yields the 
optimality conditions: 

2(il - c) + 2Ai1 

2(i2 - c) - 2Ai2 

ii - i~ - f 

o 
o 
o 

(22) 

(23) 
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Figure 3: Solution for I-d example at different bias mag­
nitudes . 

Define f to be linear with s: 
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Figure 4: Eight pole power optimal force-to-current map­

(24) ping. 

Now, taking the total derivative of the optimality condi­
tions with respect to s yields: 

[
(I + A) 

2 0 
Zl 

o 
(1 - A) (25) 

This system of ordinary differential equations is then in­
tegrated numerically, using i l = i2 = c; A = 0 as the 
initial condition at s = o. 

T he resulting currents for i l are shown in Figure 3. 
The required i2 is the same plot reflected about f = O. 
Several different magnitudes of c are considered between 
0.05 and 0.5. As c goes to zero, the solution converges 
to (1 9) , the optimal solution disregarding slew rate con­
siderations. As the m agnitude of io increases, the high 
slopes around f = 0 are smoothed out, yielding solutions 
that require greater current but do not lead to slew rate 
limiting. 

5 Eight Pole Bearin g Example 

Of practical interest is the performance of the direct 
op timal solution on the 8-pole symmetric bearing pre­
sented in §2. In this instance, two obvious candi­
dates for io are of the form {I, - 1, 1, - 1, 1, -1, 1, - IV 
and {I, 1, - 1, -1, 1, 1, - 1, _1}T which correspond to the 
NSNS and NNSS biasing schemes typically used in 8-
pole bearings . Of these two options, the NSNS scheme 
has been observed to yield consistently lower power losses 
and maximum flux densities in the stator when used as 
io; t herefore, the NSNS will be exclusively considered 
here. 

For this example, the particular io is chosen to be 

io = ~{1, - 1, 1, - 1, 1, -1 ,1 , _ 1}T (26) 

and weighting matrix Q is chosen to be the identity ma­
trix . For this case, the ordinary differential equat ions to 
be integrated are: 

M2i] { ~!} {O} o * = C?Se 
o ~ Slne 

ds (27) 

[
Q + A1Ml + A2Ml 

2 if Ml 
i f M2 

starting from the initial condition i = io , A = O. Due 
to symmetry, the inverse mapping from force to current 
for each leg has the same form , so it is sufficient to dis­
play the inverse mapping for just one leg. The inverse 
mapping for leg "1" as depicted in Figure 1 is displayed 
in F igure 4. Note that the 8-pole inverse has the same 
qualitative properties as the one degree-of-freedom in­
verse: currents in the pole nearest to the force direc­
tion go roughly with the square-root of force; currents 
for poles opposite the force direction are approximately 
zero; the inverse solution is smooth and non-zero at zero 
force. 

For comparison, the usual opposed-horseshoe bias lin­
earization scheme prescribes: 

1 1 0 
-1 0 -1 
1 0 1 

{ J, ,;c * } (~) -1 1 0 (28) z = 
1 - 1 0 

- 1 0 1 hsec 8" 

1 0 - 1 
-1 -1 0 

This current set represents biasing with flux levels in the 
legs half-way to saturation . If load capacity is defined as 
the largest magnitude force that can be produced for ev­
ery direction without causing saturation in the bearing, 
this bias level yields the largest possible load capacity for 
the bias linearization scheme. 
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Figure 5: Power optimal and bias linearization power 
consumption. 

If slew rate limitations allow a small magnitude bias­
ing vector to be chosen for the power optimal scheme, 
decreased power consumption can be realized relative to 
the bias linearization solution. Figure 5 compares the 
power dissipated with the bias linearization scheme in 
(28) to the power optimal inverse using io as defined 
in (26). The power optimal inverse yields power dissi­
pation that starts at a low level and increases linearly 
with force magnitude. Conversely, the bias linearization 
scheme starts at a high power dissipation , and power 
increases with the square of force m.agnitude. 

6 Electrical D ecoupling of the Coils 

In most magnetic bearings, each pair of adjacent coils 
is wound in reverse series. The result is a bearing that 
is effectively composed of independent horseshoes that 
are not coupled by mutual inductance. T he current in 
any horseshoe can then be controlled via a PWM ampli­
fier, since each horseshoe is an fi rst-order single input­
single output system. However, the same is not the case 
with independently controlled coils on each bearing leg. 
A current in one coil produces return flux through all 
other coils, fundamentally coupling all of the electrical 
circuits through mutual inductance. Consider , for ex­
ample, a 4-pole bearing with independently wound coils. 
T he electric circuit equations are: 

where 

L di . 
-+rz=v 
dt 

(29) 

(30) 

and v a vector of amplifier voltages . Inductance matrix L 

is singular; its eigenvalues are (N 2 a po ){ 1, 1, 1, O}. Since 
go 

L is singular, t here are only 3 states to the system, even 
though there are four currents and four inputs. Writing 
this system in standard form via a singular value decom-
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Figure 6: Circuits including lp to cancel mutual induc­
tance. 

position yields: 

-~ l v V2 
1 

-"2 
(31) 

z = x + Ur) [! ! ! !]" 
(32) 

Any component of v along {1 , 1, 1, I} is fed instanta­
neously into i. If switching amplifiers are used to produce 
v, half of the possible switching states have a compo­
nent along {I, 1, 1, I}; excit ing the zero-inductance vec­
tor is unavoidable with switching amplifiers. Problems 
in tracking the desired coil currents will result because 
part of the bearing is, in effect, a purely resistive load. 

One solution to these problems is to add extra induc­
tance to the electrical circuit equations associated only 
with the component of i along the null space of L. The 
result is that the electrical circuit equations associated . 
with each coil become decoupled; the same detent ralized 
current control scheme used for horseshoes can then be­
used for the independent coil actuator. To achieve this 
decoupling, each bearing coil is also attached in series 
to windings around a laminated slotted ring. Each elec­
tric circuit has the same number of turns wound in the 
same direction around the ring; therefore, flux is only in­
duced in the ring if i has a component along {I, 1, ... , I} . 
Schematically, the arrangement is illustrated in Figure 6. 
If the ring is designed so that the self-inductance of the 
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ring for each electric circuit, Ip, has a value of 

I = ~ (a poN2) 
p n go 

(33) 

the negative off-diagonal mutual inductances in L from 
the bearing are exactly canceled out by the positive mu­
tual inductances from the ring. The electric circuit equa­
tions becohle: 

( ap o N2) di . --- -+n=v 
\ go dt 

(34) 

Although the inductance matrix has been changed with 
respect to the electric circuit, the bearing still has all 
of the coupled magnetic properties that allow low power 
loss performance. Since the ring only adds inductance 
along the null vector of L, adding this extra ring does 
not adversely influence slew rate. 

7 Conclusions 

The magnetic inverse problem in magnetic actuators has 
been considered from the perspective of minimizing the 
2-norm of the currents needed to produce a given force. 
A problem definition was presented that forces the in­
verse to go to a set of biasing currents at zero force so 
that slew rate limiting problems are avoided. At high 
force levels, this formulation yields currents that are, in 
a sense, the smallest possible currents needed to realize a 
given force. The power-optimal inverse formulation leads 
to a set of ordinary differential equations that must be 
integrated numerically to yield an inverse mapping be­
tween desired forces and required currents. Compared 
to the usual bias current linearization solution to the 
magnetic inverse problem, the present method requires 
significantly less power to produce a given force. 

A method for electrically decoupling the coils in a 
bearing with independent coil control has also been con­
sidered. This method consists of winding turns of each 
coil's electric circuit around an extra iron ring to cancel 
out the mutual inductance coupling from the bearing. 
With this modification, the desired currents in each coil 
can be tracked by using the same decentralized scheme 
that is currently used in horseshoe-type actuators. The 
extra decoupling ring does not adversely affect the slew 
rate performance of the actuator, since all inductance is 
added along a current vector that is orthogonal to the 
currents that actually produce force in the bearing. 
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