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Abstract 

The paper presents two general modelling techniques for 
radial magnetic bearings whicll allow to consider the non­
centered rotor position and the unsymmetric flux pat­
tern. Both a finite element model and an enhanced net~ 
work model are used to evaluate important bearing para­
meters for different rotor positions and control currents. 
The calculation results will be shown for a typical de­
sign of commercially available radial magnetic bearing 
actuators with four polepairs. 

1 Introduction 

Using the traditional model to obtain the force-displace­
ment and force-current relationship for a magnetic bear­
ing actuator, the flux densities in different polepairs of a 
magnetic bearing are calculated from independent mag­
netic circuits [1], [8]. In this modelling strategy the bear­
ing consists of a number of horseshoe magnets without 
magnetic fiux paths coupling the polepairs. In the sym­
metric bearing configuration with four polepairs the two 
resulting force equations in two orthogonal directions are 
uncoupled. 

This paper describes two general modelling techniques 
which allow the non-centered rotor position and the un­
symmetric fiux pattern to be taken into consideration: 

• Electromagnetic finite element analysis using inde­
pendent coil current excitation and the multipoint 
constraint method to model the non-centered rotor 
at different angular positions. 

• Enhanced magnetic circuit model with finite per­
meable magnetic fiux paths in the stator and rotor 
backiron parts between adjacent polepairs. 
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maximum rotational speed, eddy current effects due 
to the shaft rotation cause no substantial changes in 
the magnetic fiux distribution. 

• The permeability of different iron parts is considered 
to be constant. Saturation of the magnetic circuit 
is not modelled, because common active magnetic 
bearings are not designed to run under this condi­
tion. 

• The fiux distribution in the axial direction of the 
bearing is supposed to be constant, fringing effects 
in the axial direction are not considered. Therefore, 
the calculation of the fiux densities can be carried 
out by using two dimensional models. 

Both, the non-centered rotor position and different con­
trol currents in the driving coils result in an unsymmetric 
fiux pattern, even though the actuator is symmetric with 
respect to two orthogonal directions. Therefore, coupling 
terms in the force-displacement and force-current rela­
tionship between two orthogonal directions may appear. 
Using first order expansion, the actuator force equations 
in terms of coil current i and displacement x can be writ­
ten in the general form 

F(i,x) = F(iBias,io,xo) +Ki ·i+K·x, (1) 

where current gain Ki and open loop stiffness K are writ­
ten in more detail as 

Ki = [Ki,xx 
Ki,yx 

Ki,xy ] 
Ki,yy , 

K - [Kxx 
- Kyx 

Kx y ] 
Kyy . (2) 

The calculated results for the bearing parameters mag­
netic force F and current gain Ki are compared between 
the two dimensional finite element model and the net­
work model for different rotor positions Xo. 

The calculations are concerning the design (geometry, 
materials, coils) of commercially available radial mag- 2 Modelling methods 
netic bearing actuators with four polepairs. Both analy-
ses are based on the following assumptions: 2.1 Electromagnetic finite element analysis 

• The control currents in the coil pairs are constant 
in time and all calculati~ns are performed at stand­
still. Because of the laminated rotor iron and a non­
magnetic rotor-yoke smaller than the skin depth at 

In the two dimensional finite element model Fig. 1 the 
non-centered rotor position has to be considered. This is 
carried out by using different cylindrical coordinate sys­
tems for stator and rotor geometry and a sophisticated 
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modelling of the air gap. The air gap is cut into two parts 
along a circular line concentric to the stator. The outer 
part is meshed with the stator, the inner part with the 
rotor. Both, the stator and the rotor model have equidis­
tant nodes in the angular direction on the cornman cir­
cular boundary. The two models are connected using a 
set of multipoint constraints for the unknown magnetic 
'vector potential at the corresponding nodes. For each 
radial rotor position of interest only one finite element 

. model is generated. Due to the equidistant nodes on the 
comlllon boundary, an arbitrary angular rotor position 
can be calculated by shifting the multipoint constraint 
connections [4]. 
For the whole model eight node quadrilateral and six 
node triangular isoparametric elements are employed. 
The magnetic materials (pole legs, stator backiron, rotor 
and shaft) are treated to be linear with constant permea­
bilities. The excitation is modelled by applying indepen­
dent source current densities equivalent to the product 
of coil current and the number of turns for each stator 
coil. So, there is no restriction on the combination of the 
coil current distribution. 

The governing equations for the magnetic vector poten­
tial are solved llsing the linear maglletostatic analysis 
frolll the finite dement software MSC /EMAS ['7]. 
The magnetic force F acting on the rotor surface is ob­
tained from the field solution within the air gap by in­
tegrating the Maxwell stresses over the rotor surface [6]. 
In terms of cylindrical coordinates (unit vectors er,e<p), 
the local Maxwell stresses on the rotor surface are given 
by 

() 1 (( 2 2) -. _ ) p <p = -- Br - B<p e r + 2Br B<p e<p . 
2Jlo 

(3) 

Both, the normal component and the tangential compo­
nent of the flux density within the air gap are taken into 
account. 

2.2 Enhanced lllagnetic circuit model 

Neglecting leakage and fringing effects, the magnetic flux 
paths of the magnetic bearing are well defined. Assum­
ing constant f1ux density over the cross section in the 
different flux paths of the bearing (airgap, pole legs, sta­
tor backiron, rotor and rotor-yoke), the radial magnetic 
bearing actuator can be modelled as a network of mag­
netic reluctances [3], [5). In addition to the commonly 
used independent equivalent magnetic circuit for each 
polepair, magnetic reluctances for the flux paths in the 
stator and rotor backiron parts between adjacent pole­
pairs arc considered. Therefore, the magnetic flux paths 
are represented within one equivalent magnetic circuit 
for the whole magnetic bearing as depicted in Fig. 2. 

In the derived magnetic ci rcuit the iron paths are finite 
permeable with constant permeability. Different permea­
bilities for the stator and rotor iron can be introduced if 
necessary. The circuit is excited with the product e of 
coil current and the number of turns for each stator coil. 
By applying the law of conservation of magnetic flux and 
Ampere's loop law, a system of algebra.ic equations can 
be found to evaluate the unknown magnetic flux distri­
bution. The resulting system of algebraic equations 

(4) 

is linear due to the constant permeabilities in the iron 
paths. 

The magnetic force F exerted on the rotor surface is the 
vector sum of the forces within the eight air gaps. The 
local Maxwell stresses on the rotor surface now becomes 

(,5) 

because from the magnetic circuit theory, the llux densi­
ties have only a normal component on the rotor surface. 
The flux densities are obtained directly from the flux dis­
tribution in the air gap. 

2.3 Force and stiffness calculation 

Due to the linearity of the problem, it is not meaningful 
to calculate the force for any possible coil current com­
bination at each interesting rotor position Xo. Instead, 
the relationship between the force and the four individ­
ual coil currents can be described as a quadratic fornl for 
each force component, 

F = [ 1 ['7' .] _ le .. oil· Xx . ICoil 

j - i~:oil' Xy . iCoil 
(6) 

with both presented modelling methods for each rotor 
position considered. 

The two 4x4 symmetric force matrices Xx,Xy for the fi­
nite element model are obtained in one solution sequence 
by using capabilities of the MSC/EMAS software. The 
evaluation of the two 4x4 symmetric force matrices for 
the magnetic circuit model is completely carried out from 
the algebraic system oflinear equations Eq. (4) with ma­
trix calculus by using the MATLAB package. 

Usually, instead of four independent coil currents 

( ~Coil,l } 
= ~ ~Coil,2 

l ~Coil,3 
ZCoil,4 

(7) 

two control currents in the orthogonal directions and the 
bias current as 

. {ix 1. 
IC = . ly f 

ZBias 

(8) 

are used to desribe the current injection. The transfor-
mation is defined as 

[ ~1 0 

'] iCoil = 
+1 1 ' (9) -1 0 i . IC . 

0 -1 

Therefore, the force components I~q. (6) can be written as 
quadratic forms with regard to control and bias currents 
ic too. With the introduction of new symmetric 3x3 
matrices X;: ,X~ the force components at the considered 
rotor position Xo are calculated from 

F(ic , [ J - [i?; . X;: . ic ] 
- -7' XC . 

IC' Y 'IC 
( 10) 



Furthermore, the current gain Ki can be calculated di­
rectly from the symmetric force matrices X~ ,X~ for any 
applied control and bias currents. Due to the symmetic 
matrices, the first order expansion Eq. (1) yields the cur­
rent gain in terms of control and bias currents ic in the 
form 

Ki (ic, xo) = [~~ : ~~] . [~ ~l (11) 

for both modelling methods presented. 

A particular refinement of the magnetic circuit model is, 
that open loop stiffness K can be calculated analytically 
as a differential quotient at the actual control and bias 
currents ic and the actual rotor position Xo. No differ­
ence quotient has to be calculated and therefore numer­
ical problems can be avoided. 

3 Numerical results 

The chracteristic bearing parameters magnetic force F 
and current gain Ki are evaluated considering the de­
sign of a commercially available radial magnetic bearing 
actuator with four polepairs as depicted in Fig. 1. The 
enhanced magnetic circuit model with finite permeable 
magnetic flux paths in the stator and rotor backiron parts 
between adjacent polepairs is shown in Fig. 2. 

Throughout the presented calculation results a non­
centered rotor position with an eccentricity € = 0.2 mm 
at different angular positions ¢ is assumed. The numer­
ical results are shown only for one quadrant of angular 
position values. Due to the symmetric geometry and cur­
rent injection in the two orthogonal directions x,y, the 
results for other rotor positions can be obtained by a 
meaningful interpretation of the evaluated values corre­
sponding to the directions x,y. Also, the force-current 
relationships and the current gains for 7r /2 ::; ¢ ::; 27r 
may be easily deduced from a cyclic permutation of the 
results for 0 :::; ¢ ::; 7r /2. 

3.1 Force calculation 

Fig. 3 shows the magnetic force component Fx in the hor­
izontal direction obtained from the finite element model 
for different values ofthe rotor position angle ¢. Thereby, 
the control current ix in the horizontal direction is varied 
while the control current iy in the vertical direction and 
the bias current iBias are kept constant. The angular 
rotor position significantly influences the absolute force 
value. Only for the 900 position a linear force-current 
relationship is obtained. All other rotor positions result 
in quadratic control current characteristics. 

These relationships are obtained also from the magnetic 
circuit model. A comparison between the two modelling 
methods regarding the horizontal force component Fx is 
shown in Fig. 4. There is a good agreement in the force 
component Fx between the two models. 

Fig. 5 shows the magnetic force component Fy in the ver­
tical direction obtained from the finite element model for 
different values of the rotor position angle ¢. Thereby, 
the control current ix in the horizontal direction is var­
ied while the control current iy in the vertical direction 
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and the bias current iBias are kept constant. The abso­
lute force value increases with increasing position angle 
¢ because of the decreasing airgap lengths in the lower 
vertical polepair. The effect of the variing control cur­
rent ix is small compared with the influence of the bias 
current iBia.' 

Similar relationships are obtained from the magnetic cir­
cuit model. A comparison between the two modelling 
methods for the vertical force component Fy is shown in 
Fig. 6. As the network method does not account for cir­
cumferential magnetic flux densities within the airgaps, 
the slight difference between the two methods would be 
expected from Eq. (3) and Eq. (5). 

3.2 Actuator gain calculation 

Fig. 7 shows the actuator gains in terms of the bias cur­
rent iBia. with no control currents ix,iy as obtained from 
the finite element model. As known from the analysis for 
a centered rotor position, there is a linear relationship 
between actuator gain and bias current. This is true for 
the non-centered rotor position too. However, the angu­
lar rotor position ¢ has a strong influence on the gain 
magnitude. Because of the non-centered rotor position, 
cross-coupling terms in the current gain Ki appear. How­
ever, they are negligible small compared with the main 
diagonal terms. The main diagonal terms are evaluated 
by both methods with good agreement as shown in Fig. 8. 
As mentioned above, the network method does not ac­
count for circumferential magnetic flux densities within 
the airgaps. Therefore, the cross-coupling terms are not 
calculated correctly by the magnetic circuit model as 
shown in Fig. 8. 
The calculated characteristics of the current gain Ki,xx 
in terms of the control current ix (as obtained from the fi­
nite element model) in Fig. 9 are closely related to the re­
lationships of the force component Fx in Fig. 3. Only for 
the 900 position of the rotor a constant value is obtained. 
All other rotor positions result in linear control current 
characteristics. This is caused by the non-centered ro­
tor position. The agreement between the two modelling 
methods (Fig. 10) is nearly as good as for the force com­
ponent Fx , see Fig. 4. 

The gain cross-coupling terms Ki,xy as a function of the 
control current ix as obtained from the finite element 
model are shown in Fig. 11. As expected, the control 
current affects the actuator gain much stronger than the 
bias current (compare Fig. 7). The comparsion between 
the cross-coupling gains calculated from both methods is 
shown in Fig. 12. Nearby the zero crossing of a cross­
coupling term value, the calculated ratios are not mean­
ingful because of numerical rounding errors. However, 
aside the zero crossing vicinity noticeable differences be­
tween the two modelling methods are again based on the 
different formulas Eq. (3),Eq. (5) for the maxwell stresses 
within the airgaps. 

4 Conclusions 

The two general modelling techniques presented allow to 
consider non-centered rotor positions and unsymmetric 
flux patterns in magnetic bearings. Important bearing 
parameters as magnetic force F and current gain Ki are 
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evaluated for various rotor positions and control currents. 
Thereby, the bias current can be considered as a para­
meter. 

Numerical results obtained from both a two dimensional 
finite element model and a network model are compared. 
The aim of the comparison is to validate the magnetic cir­
cuit mode! that neglects leakage flux paths and fringing 
effects. The two methods presented agree closely in the 
magnetic force characteristics F and in the main diago­
Hal terrns of the actuator gain K i . There are noticeable 
differences, however, in the cross-coupling terms of the 
actuator gain Ki. 
Since the theory of radial magnetic bearings with cen­
tered rotor postion considers only the main diagonal 
terms of the actuator gain, the magnetic circuit model 
is applicable with less effort compared with the finite 
element model. 

Only with the full utilization of linearity the finite ele­
ment solutions can be treated as an economic tool to 
calculate magnetic force and actuator gain. Using a 
sophisticated modelling of the air gap, only one finite 
element model is generated for each radial rotor posi­
tion of interest. The different angular of the 
non-centered rotor are modelled with the rnultipoint con­
straint method. The finite element model gains in sig­
nificance when concerning non-centered rotor positions 
because of more accurate results for magnetic force and 
actuator gain. 
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Fig. 2: Enhanced m agnetic circuit model (right half) 
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