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Abstract: Previously, thin plate assumptions have been 
used to obtain a one-dimensional eddy current model for 
predicting the stationary, transformer-type losses in mag
netic bearings built out of laminated material. Using 
similar assumptions as in the l-D eddy current model, 
rotating losses can be predicted for a laminated heteropo
lar radial magnetic bearing. The thin plate model of ro
tating losses yields a hybrid analyt ical- boundary element 
model that is computationally inexpensive to implement. 
P redictio ns from this model compare favorably to losses 
experimentally m easured in rotor run- down t ests. 

1 I n troduction 

Classically, eddy currents in laminated transformer cores 
have been t reated with the model presented by Stoll 
[1]. To simplify the eddy current problem, this model 
idealizes the eddy current problem as "locally one
dimensional because the penetrat ion distance is small 
compared to the other [lamination] dimensions." With 
this assumption, t he eddy current problem is reduced to 
a one-dimensional diffus ion equat ion that can be solved 
analytically. 

The 1-D eddy current model has been applied with 
success to t ransformer cores, magnetic bearings [2] [3] 
and m agnetic shielding [4]. In all of these cases, however, 
eddy currents are induced by variation of the applied 
magnetic field in tim e, rather than by motion . 

Because of the simplicity of t he I-D model , it is tempt
ing to try a similar approach to modeling eddy currents 
generated by motion in laminated magnetic bearing ro
tors. It has been suggested that the classical eddy cur
rent loss equations derived for stationary t ransformers 
might be applied directly to rotating losses with an "ef
fective frequency" and "effective volume" based on rotor 
dimensions and speed [5] . However, the choice of effec
tive frequency and volume is somewhat heuristic. 

T he goal of the present work is to model the rota
t ional eddy current losses in heteropolar radial magnetic 
bearings in a consistent fashion that does not require the 
choice of an effect ive frequency and volume . To simplify 
t he formulation, the laminated structure of the journal 
is exploited. Using a thin plate approach similar to t he 
I-D model applied to t ransformer-type losses, a simpli
fied model is derived that gives an analytical solution for 
flux density inside the journal in terms of the magnetic 

scalar potential at the journal surface . 
By combinin g the analytical model inside the rotor 

with a boundary element model of the m agnetic field in 
the air between the pole tips and the rotor surface , the 
scalar potential at the rotor surface can be determined, 
and therefore the field inside the rotor, fo r any configura
t ion of coil currents. T he rotating losses are t hen found 
by summing the loss associated with each Fourier com
ponent of the field at the rotor surface, similar to the 
qualitative approach in [6] . The validity of the model 
is assessed by comparing the predicted power losses to 
losses derived from experimental run-down tests . Pre
dicted losses show a good agreement to experimentally 
derived losses. 

2 Model Development 

In this work, it is assumed that t he rotor is composed 
of a linear material obeying the steady-state Maxwell 's 
equations : 
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and the linear constitutive laws: 
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From the analysis of transformer losses including hys
teresis in [1], electri cal losses including hysteresis are only 
be slightly higher t han losses without hysteresis at high 
excitation frequencies . It is reasonable to expect that 
t he same is true at high rotor speeds. For simplicity, 
hysteresis effects are neglected in the present analysis. 

To simplify the analysis, it will be assumed that the 
journal can be "unrolled" into a periodic sheet, as pic
tured in Figure 1. In the unrolled model , every point in 
the journal has the velocity 

(6) 

where r 0 is the outer radius of the journal, w is the ro ta
t ional speed in rad/s, and a2 is a unit vector associated 
with the () coordinate. Eq. (3), the mechanism through 
which motion-induced eddy currents are created , can 
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"Unrolled" heteropolar bearing. 

then be simplified using the definition of velocity from 
(6): 

f}B 
'\1 x E = -wf}() (7) 

By combining Eqs. (1), (2), and (7) and applying the 
constitutive laws, partial differential equation describing 
the flux distribution inside one lamination is obtained: 

f}B 
'\1 2 B = wop, -

f}() (8) 

No thin-plate assumption has yet been made. In the 
unrolled domain, 

(9) 

If the rotor is composed of thin laminations in the a3 

direction, the cross-lamination second-order term %z22 
can be expected to dominate '\1; 9B because the second 
derivatives of B with respect to ; must be huge to affect 
any change in B across the lamination thickness. The 
thin-plate model assumes that the rand () second-order 
components are so insignificant compared to the z com
ponent that they can be neglected altogether. Applying 
the thin-plate assumption to (8) yields a simplified eddy 
current model driven by journal motion: 

(10) 

Equation (10) is very similar to Stoll's I-D diffusion 
equation; the difference is that for transformer-type 
losses, the first-order derivative on the right-hand side 
is with respect to time rather than the spatial coordi
nate (). 

Since the unrolled domain is 211" periodic in the () coor
dinate, the solution for B is expected to consist of har
monics in (). A phasor representation [7] can be adopted 
where B is understood to be the real part of 

00 00 

L bn ejn9 == L bn (cos n() + j sinn()) (11) 
n=O n=O 

where bn is a complex number denoting the magnitude 
and phase of the nth harmonic component of B. Since 
the system is linear, each harmonic can be considered 
separately and the results for all harmonics superim
posed to yield a solution for B. 

Substituting the phasor representation for B into (10) 
yields 

(12) 

In the phasor representation, the flux distribution for 
each harmonic is merely an ordinary differential equa
tion respect to z, the coordinate in the plate thickness 
direction. 

Boundary conditions must be specified if (12) is to be 
solved for the flux distribution in the laminated rotor. 
Let each lamination be of thickness d, and let z = 0 at 
the center of the lamination of interest. Since the model 
is pseudo-2-dimensional (that is, the flux density distri
bution is the same in every lamination in the journal), 
one would expect no a3 component of bn at the inter
face between laminations. The axial component of B, 
bn ·a3, is therefore equal to zero everywhere. The al and 
a2 boundary condition at interface between laminations 
then specified as 

f}B 
a;-[r, (), 0] = 0 (13) 

where Bo[r, ()] is some unknown function of rand () that 
is yet to be determined. Converting the boundary con
ditions into the phasor representation gives: 

f}bn [r, 0] = 0 
f}z 

(14) 

where bn,o represents the nth harmonic component of 
Bo. Equation (12) subject to (14) is the same equation 
that must be solved in [1] for transformer-type losses; the 
solution is 

b [ ] - b [] cosh[VFiWriJi z] 
n r,z - nor ~d 

, cosh[y jnwop, "2] 
(15) 

The average flux density, bn , at in the lamination is found 
by integrating across the lamination: 

2 [d/2 
d Jo bn[r, z] dz (16) 

bn,o tanh[~ ~] 
VJnwop, ~ 

However, the boundary field distribution characterized 
by bn,o has not yet been determined. This boundary 
condition should be chosen such that zero divergence of 
B, equation (2), is satisfied. To solve for an appropriate 
Bo , define magnetic scalar potential n as 

(17) 

Since there is no a3 component of B, zero divergence is 
satisfied if 

(18) 

The zero divergence of Bo written in terms of scalar po
tential is 

(19) 
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Transforming (19) into the phasor representation yields: For continuity of H on the air-iron boundary, 

~20~ _ (~) 2 On = 0 (20) 
8r·2 1'0 

It is reasonable to impose the boundary condition 

(Jnn -- = 0; r=ri (21) 
81' 

which requires that no flux crosses the inner radius of 
the journal at l' = 1'j. At l' = 1'0' the outer radius of the 
journal, the value of On is some specified value, On,o: 

(22) 

Solving (20) with these boundary conditions gives the 
scalar potential for each harmonic in terms of scalar po
tential at the journal surface: 

cosh[~(r - ri)j 
On [1'] = On,o h[ nO( )] cos roro-1',: 

(23) 

Eqs. (15) and (23) are combined to describe each har
monic of flux density in the journal: 

bn -~nn,o (~) (~::~f~~D * (24) 

( 
sinh[;' (1' - ri)] . cosh[;' (1' - ri)] ) 

o al + J 0 a2 
cosh[;" (1'0 - ri)] cosh[;" (1'0 - ri)] 

Through (24), the flux density is defined in terms of . 
unknown Fourier series coefficients of the magnetic scalar 
potential at the rotor surface. If an input-output rela
tionship between applied potential at the rotor surface 
to resulting flux passing normal to the rotor surface is 
formed, the analytical solution for the field inside the 
journal can be combined with a computational model of 
the rest of the bearing to determine the unknown distri
bution no [OJ at the rotor surface. 

To simplify the analysis, it will be assumed that the 
fiux in the gap is purely 2-dimensional. However, the 
solution in the lamination is a function of z, as can be 
seen in (15). It will be assumed that a transition between 
the 2-d solution in the gap and the fully-developed profile 
described by (15) takes place in a very thin skin region 
near the surface of the rotor. The interface with the air 
is then modeled by a conservation of flux passing normal 
to the air-iron interface: 

or for each harmonic: 

(26) 

In terms of scalar potential, the conservation condition 
IS 

( ~ tanh[~ ~]) ~ r(iron)nn] 
vjnw(J'~ ~ or l 

(27) 

(28) 

By differentiating (23) with respect to 1', and substituting 
into (27), a boundary condition results that relates the 
applied scalar potential on the journal surface, nn, to its 
normal derivative on the air side of the iron-air interface: 

8nn _ n ~(tanh[V)'nw(J'll ~]) n 
~-Pr(;:-) -77:::;--d - tanh[-(ro-r;)]nn 
ur ° V Jnwo-~ i ro 

(29) 
Eq. (29) specifies the relationship between potential in 
the air to the normal gradient of potential at the surface 
of the rotor. By solving for the potential distribution in 
the in the air only subject to boundary condition (29), 
the field inside the rotor is uniquely specified by (24). 

3 Power loss 

If the magnetic scalar potential is known at the rotor 
surface, the field distribution in the journal is known, 
and eddy current power losses can be computed. This 
loss, P, is found by integrating resistive power loss over 
the volume of the rotor: 

f ro j~ f27r (1) 
P= dJn - J·Jrodzdr·dB 

ri -, 0 (J' 
(30) 

Current density J is found via (1), by taking the curl of 
the field intensity. Since the l' and 0 variation of Hare 
described by scalar potential 0, J. J simplifies consider
ably to 

J.J = (O,~1)2 + (8H2)2 
\ {Jz 8z (31) 

By orthogonality of sines and cosines, cross-products 
between different harmonics integrate to zero when (31) 
is evaluated over the entire volume of the journal. The 
power loss contributions from each harmonic can be con
sidered separately and the results summed to get the to
tal motion-induced power loss: 

00 

(32) 

For each harmonic, the power loss is 

Pn=7fro /roj118bnl
2 dzdr (33) 

(J1l Jri _~ oz 
2 

where llf:- is found by differentiating (24) with respect 
to z. Integrating (33) yields: 

( ) (
'hd . d) 2 27fn sm r - sm r 

Pn = Inn,ol -6- tanh[;" (1'0-1';)] ~' d 
(J' n cosh On + cos T,: 

(34) 
where 

(35) 
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Figure 2: Simplified computational domain for modeling 
fringing effects . 

is the skin depth associated with each harmonic. Equa
tion (34) is the loss for each lamination ; t his loss must be 
multiplied by the number of laminat ions in the journal 
to get the total bearing losses. 

4 Incorporation of the Jou rnal Solution with 
the Bearing Str u cture 

If the field a t the surface of the rotor is known, the rotat
ing power loss can be determined via (34). As noted by 
Matsumura [6], the distribution of flux on the air-iron 
boundary has a large influence on the resulting power 
losses, and the m otion-induced eddy currents somewhat 
alter the field distribution from the zero speed form . To 
determine the correct potential distribution at the sur
face of the rotor , the analytical solution inside the rotor 
must be coupled to a numerical solution for the field in 
the air between the poles and rotor surface. 

An elaborate fi nite element or boundary element 
model could be used to represent the st ator . For the 
purposes of t his study, however, a very elaborate model 
is unnecessarily complicated. The goal is to model the 
fringing of fl ux around the edges of t he poles correctly. 
To perform this task , it is sufficient to use t he simple 
computational domain pictured in Figure 2. The com
putational domain is a t hin annulus of air between the 
rotor surface and pole tips. 

If the stator is built of highly permeable material, 
the stator back-iron can be considered magnetically 
"grounded" at zero potential. The potential on a sect ion 
of the outside boundary of the annulus associated with 
the kth pole can then be specified to be N i k, the number 
of Amp-Turns of current flowing in the coil around the 
kth pole. 

Between pole tips , the boundary condition ani ar = 0 
is applied. This boundary condition forces all flux to 
pass the outer boundary of the annulus through the pole 
faces. 

On the inside surface of t he air annulus, boundary 
condition (29) is imposed. To apply this boundary con
dition, the spatial boundary values must be transformed 
into the phasor representation , the boundary conditions 

applied, and then transformed back into spatial coordi
nates. The transformation to phasor form is 

1 r27r 
nn,o = -;;: io (0,0[0] cos nO - j 0,0[0] sin nO) dO n > O 

(36) 

(37) 

However, t he boundary is represented by a finite number 
of elements. Specifically, let the rotor surface be divided 
into m discrete elements. Inside each element, the scalar 
potential and normal gradient of scalar potential are ap
proximated with constant trial functions. Equations (36) 
and (37) can then be approximated by the discrete trans
forms : 

2 m . 

nn,o = m L (no[k] cos[nk60]- j n o[k] sin[nk60]) 
k = l 

(38) 
1 m 

0,0,0 = m L n o[k] (39) 
k =l 

where no[k] is the value of scalar potential a the center of 
the kth element, and 15 0 is the length of each element in 
radians . Eqs. (38) and (39) are a linear transformation 
between the spatial and phasor representations of 0, on 
the rotor surface . Since there is only a fini t e number of 
boundary elements, only the first ~ harmonics can be 
represented. 

Since boundary condit ion (29) couples all boundary 
nodal values, it is unsuitable for use with a fini te ele
ment scheme in which bandedness of the resulting stiff
ness mat rix is essential to an efficient solution. Instead, 
a boundary element analysis is indicated. A boundary 
element scheme trades a large but banded mat rix for 
a much smaller but full matrix. Applying a boundary 
condition that couples together all boundary nodes is 
consistent with the boundary element formulation. A 
detailed description of the boundary method with con
stant t rial function elem ents applied to solving \720, = 0 
is contained in [8]. 

5 Comparison of Model to Experimentally 
Measured Losses 

Losses derived from the model can be compared to the 
losses derived from run-down tests of the high-speed loss 
rig of Kasarda et al. [5]. The dimensions of this rig 
necessary for predicting rotating losses are contained in 
Table 1. The permeability, J-l, and conduct ivity, (J', of the 
laminat ion material were determined via a test ring built 
from the same batch of material as the journal. 

Run-down tests were performed on the rig at three 
different bias current levels while running t he bearing 
in a NSNS biasing scheme. Assuming that the electri
cal losses scale with the square of bias current level, the 
windage component of t he rota ting losses was separated 
from the electrical component. The result is a profile 
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Table 1: High-speed loss rig dimensions. 
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Figure 3: Experimental and predicted rotational losses. 

of eddy current loss per Ampere-squared of bias current 
versus running speed. This experimental result is conI
pared with the predicted losses in Figure 3. (The error 
envelope in this figure are due to uncertainty in the mea
surement of bias current levels for each run-down test). 
Overall, the predicted losses correspond closely to the 
measured losses. The model's predictions are within the 
bOlluds of experimental uncertainty throughout the en
tire range of 1000 to 24,000 RPM. 

6 llesults from the Numerical Model 

the model, several long-standing questions with 
regard to rotating losses in maglletic bearings can be 
addressed. These questions are: 

Is it better to wind the coils of a bearing in a N SNS 
or a NNSS configuration? 

• Do motion-induced eddy currents significantly in
fluence the amount of flux crossing the air gaps, 
thereby changing the relationship between applied 
current and resulting force at high speeds? 

13._ NSNS ______ .'fn'sus Nl_ S Losses 

Several works have examined the question of whether 
lower losses result from NSNS or NNSS windings of the 
bearing's poles [5] [6]. The general conclusion of these 
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Figure 4: Comparison of NSNS to NNSS losses. 

works is that lower losses result from NNSS windings 
than NSNS windings. The present loss model shows a 
slightly different result. The model of the high-speed 
loss rig was evaluated using both configurations. A plot 
of the ratio of the two losses versus rotor speed is shown 
in Figure 4. This plot shows that NNSS losses are indeed 
lower at low speeds. However, there is a point at high 
speed where the losses are equal for both configurations. 
Beyond this point, NSNS losses are actually lower than 
NNSS losses for the model of the high-speed loss rig. 
The explanation for this behavior is that the losses in 
each configuration arise from different sets of harmonics 
that change in different ways in response to increasing 
speed. 

fL2 Effect of ]:i,otation on Flux Across the 

It has been asserted in [6] that flux across the air gaps is 
not greatly affected by motion-induced eddy currents in 
the journal. This claim is supported by the model of the 
high-speed loss rig. As an example ofthe variation profile 
of flux density crossing the surface of the rotor with rotor 
speed, the model was tested in a NSNS winding config
uration at 25 RPM and 25,000 ::-cPl'v1. The average flux 
distributions about one pole resulting from a one Ampere 
bias current level are plotted in Figure 5. The dashed line 
represents the distribution at 25 :RPM, and the solid line 
the distribution at 25,000 RPM. The flux density pro
file is suppressed at the leading pole edge; however, the 
magnitude ofthe change is very small. There is therefore 
a negligibly small variation in the relationship between 
current and force for increasing rotor speed for the mode! 
of the high-speed loss rig. However, for bearings with a 
smaller gap, the change in the Hux density profile with 
speed may be more significant. If the gap is smaller, 
a higher percentage of the reluctance for any flux path 
will be carried by the journal iron, accentuating the eddy 
current effects. 
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Figure 5: Comparison of flux density profile at 25 and 
25,000 RPM. 

7 Conclusions 

A simplified model of motion-induced eddy currents in 
the rotating journal of a heteropolar radial magnetic 
bearing has been considered. Simplifying assumptions 
used in the analysis are: 

$ Hysteresis effects are neglected. 

• The journal is treated as an "unrolled" periodic 
sheet. 

• Second-order derivatives associated with the plate 
thickness direction dominate the cross-lamination 
flux density profile (the thin plate assumption). 

• Flux density in the air gaps is two dimensional. The 
transition to the fully-developed eddy current profile 
takes place in a negligibly thin region of the journal 
adjacent to the air-iron interface. 

The resulting eddy current model is then solved analyti
cally for the field distribution inside the rotating journal 
in terms of the magnetic scalar potential applied at the 
surface of the journal. The analytical solution of the 
magnetic field inside the rotor is combined with a two
dimensional computational solution of the field in the air 
between the journal and stator surfaces so that the mag
netic field can be computed for arbitrary coil currents. 
The thin-plate model of rotating losses shows good agree
ment with experimentally measured power losses from a 
high-speed magnetically suspended rotor. 

Several interesting corollary results arise from the 
model. First, a NNSS biasing scheme provides lower ro
tating losses at low speed while a NSNS scheme yields 
lower losses at very high speeds. Second, the presence of 
rotationally-induced eddy currents does not significantly 
affect the profile of average flux density on the surface 
of the journal. The relationship between applied cur
rent and resulting force is nearly constant across a wide 
range of running speed for bearings with relatively large 
alr gaps. 

Several extensions of this work have yet to be consid
ered. The analysis could be expanded to approximately 

include the effects of hysteresis using a constant phase 
lag between between Band H. The effect of time-varying 
coil currents is also yet to be included. The present anal
ysis does not address homopolar radial bearings, which 
are expected to achieve low rotating losses. 'The thin 
plate model might be extended to address this configu
ration, but the analysis would have to be expanded to 
a three-dimensional domain rather than the pseudo-two· 
dimensional analysis appropriate for heteropolar bear
mgs. 
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