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MAGNETIC FIELD FINITE ELEMENT MODELING OF MAGNETIC 
BEARINGS INCLUDING ROTOR MOTION EFFECTS AND EDDY CURRENTS 

ABSTRACT 

R. D. Rockwell, Jr. 
P. E. Allaire 
Mechanical, Aero & 
Nuclear Engineering 
U. of Virginia 
Charlottesville, VA 
USA 

The purpose of this paper is 
to develop the finite element model 
of magnetic and electric fields in 
magnetic bearings, including the 
motion of the magnetic material in 
the rotor. A good computational 
model is of importance in 
calculating the magnetic field, 
forces on the rotor and in 
determining eddy current losses. 

INTRO 

Sarma [1] derived a magnetic 
vector potential, A, and an electric 
vector potential, ;, for non-linear, 
time dependent electromagnetic field 
problems but without considering 
motion of the magnetic material. 
Muramatsu, et ale [2] considered a 
set of coupled vector differential 
equations for A and ~ in fixed and 
moving coordinate Gystems for eddy 
current analysis in moving 
conductors. Chan and Williamson [3] 
considered the analysis of eddy 
current problems involving relative 
motion. They also obtained a 
coupled differential equation for A 
and ~ in three dimensions. Ito, et 
ale [4] developed a time dependent 
differential equation for A 
including traveling magnetic field 
effects (motional effects) which is 
uncoupled from ; but involves the 
curl of the vector magnetic 
potential. Numerical instabilities 
arise at high velocities and a 
method of upwinding is required to 
remove the instability [3,4]. 

Eddy current losses in 
magnetic bearings were first 
calculated using a finite element 
model by Yoshimoto [5]. He assumed 
a sinusoidal rotational current 
distribution for a two dimensional 
magnetic bearing in terms of a 
vector magnetic potential. 
Matsumura, et ale [6] presented a 
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Fourier analysis of the distribution 
of the magnetic field in a magnetic 
bearing. Kasarda, et •• 1. [7,8] have 
presented experimental results on 
eddy currents and employed 
predictions of eddy currents based 
upon classical power loss formulas 
developed for transformers and 
electric motors using an effective 
frequency based upon the nurrber of 
poles in the bearing. 

The present approach starts 
with Maxwell's equations and 
develops an uncoupled form of the 
governing differential equation for 
the magnetic vector potential. The 
eddy current flow is then evaluated 
separately. Only two dimensional 
equations are treated in this paper. 

MAGNETIC POTENTIAL FO~~l:LL~r 

The equations for the magnetic 
and electric field in a magnetic 
bearing are solved in a ntator fixed 
coordinate system so they are not 
time dependent. Maxwell's equations 
and linear material relations for 
the magnetic flux density, S, the 
electric field, E, the magnetic 
field, H, and current density, J, 
with the magnetic reluctivity p and 
the conductivity a are 

V' B = 0 , VXH=J 

VXE=VX([TXB) (1) 

J == aE H == vB 

Here Faraday's law includes the 
rotor magnetic material moving with 
velocity U relative to the stator 
fixed coordinate system. The 
magnetic vector potential A is 
defined by the equation 

B == VXA which satisfies V . B == O. 
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In Ampere's law, the current density 
on the right hand side is spli~into 
a known coil current density, J 8 , 

defined in the coil volume, and.... an 
unknown eddy current density, J a 
defined in the remaining bearing 
analysis volume . 

Faraday's law can be written 
as the curl of a vec tor quantity 
which equals zero. Thus it can be 
expressed as the gradient of an 
electric scalar potential, ¢. The 
eddy current expression can now be 
e xpressed a s 

Ampere's law becomes 

vVX( VXA) + oVl/J 

- aUX(VXA) = J. 

Defining the gauge of Maxwell's 
equations as 

(3) 

vV' (A) + al/J = 0 (4) 

and using a vector identity, 
Ampere's law is transformed to 

v V . VA + aUX ( VXA) = - J II (5) 

as simplified from (9]. This is a 
suitable form for solution using 
finite elements. 

TWO DIMENSIONAL FINITE ELEMENT 
FORMULATION 

In two dimensions, the 
governing differential equation for 
the axial c omponent of the magnetic 
vector potential, ~, is obtained 
from the z component of (5) with the 
velocity terms included as 

( 6 ) 

This e quation applies to the case o f 
a solid rotor (not laminated) so 
t h at eddy currents a re free to 
propagate in the axial (z) 
direction. The magnetic vector 
potenti al equat ion is similar to the 
2-D diffusion-convection equation in 
fluid mechanics. Then the rotor 
mot ion terms are modeled using 
upwinding methods developed in the 
fluid mechanics area of re s earch. 
Let the f inite element approximation 
to the solution b e A*, then the two 
dimensional differential e quation 
has the form 

(7 ) 

where EA (x, y) is the error [10]. 
The weighted residual for each 
element then has the form 

(8 ) 

where AD is the element area and n 
has the values 1,2,3,4 for a four 
node isoparametric element. The 
weighting functions are written as 

where G. are the fin ite element 
shape functions, Ux are the rotor 
velocity components, and DG is the 
matrix of the derivatives of the 
shape functions. The second term on 
the right provides the upwinding 
terms, a dapted from c omputational 
fluids [11,12] necessary for the 



motion terms in the rotor. In this 
analysis, the second term is 
actually only employed for the 
velocity terms, as is customary in 
fi nite elements for c omputational 
fluids. 

MAGNETIC BEARING APPLICATION 

Magnetic field r esults have 
been obtained for a typical magnetic 
bearing including rotor motion 
effects . Figure 1 shows the 
magnetic bearing geometry considered 
here and Fig. 2 shows the finite 
element mesh. The mesh employed 
4480 elements and 4640 nodes. 

Radial Magnetic Bearing Geometry 

Stator 

Pole 

x 

Rotor Coil 

Figure 1. Magnetic tlearing Geometry 

The bearing has 8 poles, rotor 00 = 
90.9 rom (3.58 in), shaft 00 = 50.8 
rom (2.0 in), stator 00 = 196.2 rom 
(7.726 in), axial length of bearing 

Figure 2. Finite Element Mesh 
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L z: 43.6 rom (1.715 in) (without 
coils), and air gap = 0.762 mm 
(0.030 in). The radial length of 
each leg is 31.8 rom (1.253 in) and 
the c ircumferential width of each 
leg is 21.1 rom (0.79 in). The 
conductivity of the rotor is 
1.03x107 1/0m in the axia l direction 
and the relative permeability of the 
rotor and stator material is 3,000. 

The calculated magnetic vector 
potential has been obtained fo r the 
case where only two poles (1 and 2) 
are activated with NI = 420 amp
turns. The value of ~ is then 
plotted along the r otor surface at 0 
rpm in Fig. 3 . Fig. 4 shows ~ for 
9,550 rpm (1000 r a d/s) 
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Figure 3. Magnetic Vector Potential, 
~, At Rotor Surface For 0 rpm 
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~, At Rotor Surface For 9,550 rpm 
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indicating the shift of the peaks in 
the direction of motion of the 
rotor. The values are shown both 
with upwinding off and upwinding on. 
In this analysis, the effect of 
upwinding is found to be not very 
important . 

Magnetic flux lines for 0 rpm 
are shown in Fig. 5 . As the rotor 
rotatio~al velocity increases, the 
flux lines shift in the direction of 
the velocity. Fig. 6 shows t he 
lines of magnetic flux for 9 5.5 rpm . 

Figure 5. Magnetic Flux Lines In 
Magnetic Bearing At 0 r pm 

Figure 6 . Magne t ic Flux Lines In 
Magnetic Bea r i ng At 95 .5 r pm 

Fig . 7 shows the result at 9 50 rpm. 
Note t hat the eddy cur rent e ffect s 
under the edge o f e ach pole induce 
magnetic flux in the adj acent pole 
on the direction opposite to the 

motion. Fig. 8 plot s the magnetic 
f l ux lines at 9,550 rpm, which 
further illustrates this effect. 
All of the plots in Figs . 5-8 have 
upwinding on. . 

Figure 7. Magnetic Flux Lines In 
Magnetic Bearing At 9 55 rpm 

Figure 8. Magnetic Flux Line s 
I n Magnetic Bearing At 9 , 550 r pm 

The x and y force components 
are calculated using the Maxwell 
s tress tensor for the forces . The 
r esults are given in Fig. 9. As the 
rotational speed increases, large 
eddy currents are set up in the 
unlaminated rotor. These in turn 
develop flux in the air gap which 
opposes the applied flux. The 
applied force on the rotor decreases 
to zero. 
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F igure 9. Forces Acting On Rotor vs. Rota tional Speed 

EDDY CURRENTS 

The eddy currents in the rotor 
are evaluated from 

(10) 

Figs. 10 and 11 show the eddy 
current patterns in the rotor for 
955 rpm and 9,550 rpm. 

Figure 10. Eddy Current Density In 
Magnetic Bearing At 955 rpm 

Both Figs. 10 and 11 illustrate the 
formation of eddy currents under 
each pole edge, including the 
upstream edge of pole 1. The power 
loss for the full rotor is shown in 
Fig. 12. It increase s s ubstantial ly 
up to a peak value a nd then level s 

Figure 11. Eddy Current Density In 
Magnetic Bearing At 9550 rpm 

off a t the maximum value. All of 
the coil energy goes into producing 
eddy currents and no levitating 
force on the r otor is obtained. 

CONCLUSIONS 

A general differential 
equation fo r the magnetic vector 
potential has been derived for a 
magnetic bearing geometry. Unlike 
previous works [2,3], an uncoupled 
equation fo r A is derived and the 
eddy current e v aluation is a 
secondary c alculation. An upwinded 
finite element solution method has 
been f ormulated although upwinding 
did not prove to be much of a factor 
in this particular analysis , due to 
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Figure 12. Rotor Power Loss Due to Eddy Currents VB. Rotor Speed 

the use of a full bearing model 
(360 degrees), rather t han a partial 
model. An example two dimensional 
radial bearing with a solid rotor 
was evaluated using fin ite elements. 
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