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Abstract - Suspension techniques employing a tuned LC 

circuit have the advantage that stable suspension can be 

achieved without using independent displacement sensors. 

Therefore, they are suitable for levitating micro mechanical 

objects by either magnetic or electrostatic force. However, 

tuned LC circuit suspension systems suffer from inherent 

dynamic instability, which has seriously hampered the research 

and applications of this technique. In this paper, a current 

feedback stabilizition method is proposed, and its effectiveness 

is confirmed experimentally. 

Nomenclature 

The symbols used in this paper are listed below. The super

script "-" denotes the total value, and the subscript "e" de

notes the value at the equilibrium state. Symbols without su

perscript "-" and subscript "e" are small variable terms from 

the equilibrium state. 

E: Amplitude of source voltage (V) 

E : Amplitude of control voltage (V) 
c 

f: Source frequency (Hz) 

00: Source angular frequency (rad/s) 

C: Capacitance of LC circuit (F) 

L: Inductance of electromagnet (H) 

R: Coil resistance (ohm) 

x: Air gap (m) 

F: Magnetic force (N) 

i: Coil current (A) 

A: Coefficient of sin(oot) (A) 

B: Coefficient of cos(oot) (A) 

H: Feedback signal (N) 

m: Mass of suspended object 

Fd: Disturbance force (N) 

t: Times (s) 

T: Phase lead control parameter 

K : Proportional control parameter 
p 

n: Phase lead control parameter 

K: spring constant of leaf spring (N/m) s 

1. Introduction 

The novel aspect of the suspension technique using tuned 

LC circuits is that stable suspension can be achieved without 

employing independent displacement sensors, via either mag

netic or electrostatic forces. Therefore, compared to other sus

pension techniques, it is more suitable to the following sys

tems: 

1) Micro mechanical systems such as micro magnetic bear

ings and micro electrostatic actuators and motors [1], [2]. In 

such systems, the use of independent displacement sensors 

increases not only system total size, but also system cost. Tra

ditional displacement sensors are generally big and cannot be 

directly introduced into such systems, new types of sensors 

need to be developed. 

2) Long distance levitation and transportation systems. For 

example, in a levitation and transportation system using con

trolled DC electromagnets with several meters lengths, sev

eral hundreds of sensors were used to keep the suspension state 

[3]. This led to high system cost and difficulty of manage

ment. 

3) Electrostatic levitation systems for some materials such as 

glass. In such a system, it is very difficult to detect the dis

placement of a glass plate by the traditional capacitance, eddy

current or optical sensors. 

Although the suspension technique using tuned LC circuits 

has the above advantages and great industrial and scientific 

application potential, it has found applications only in some 

specialized fields. The reason is its inherent dynamical insta

bility. A suspension system using tuned LC circuits is dynami-
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Fig. 1 Magnetic suspension using tuned LC circuit 

cally unstable, and the suspended object tends to vibrate di

vergently jf additional damping is not applied on it 

In this paper, a new dynamic stabilization method, current 

feedback damping method is proposed. It uses the coil cur

rent, which contains the displacement infonnatiol1 of the sus

pended objcct, as a feedback signal to control the amplitude 

of the sourcc voltage and thus to stabilize the suspension sys·· 

tcm. 

2. Principle of levitation 

Earnshaw's theorem and Braunbeck's subsequent work claim 

that stable suspension or levitation cannot be achieved by elec

tromagnets whose coil current is constant, whether they are 

DC or AC. As indicated by its name, tuned LC circuits mag

netic suspension modifies the coil current using tuned LC cir

cuits. More in detail. it uses the variation of the inductance of 

the electromagnet, which is governed by the gap between the 

electromagnet and the suspended object, to modify the coil 

current and hence the attractive force. Fig. 1 shows a single 

degree-of-freedom (DOF) vcrsion of magnetic suspension sys

tems using a tuned LC circuit. Here it is supposed that the 

suspended object can move only in the vertical direction and 

the effective resistance of coil is constant. The electromagnet 

is the inductive part of the LC circuit. The LC circuit is de

signed in such a way that when the suspended object moves 

away from the electromagnet, the inductance decreases. The 

LC circuit tends to become resonant, increasing coil current 

and hence the attractive force, and thus restores the suspended 

object to its original position. On the other hand, when the 

suspended object moves towards the electromagnet, inductance 

increases. The LC circuit goes away from the resonant state, 

coil current and the attractive force decrease. As a result, the 

suspended object is pulled down by gravity. Therefore, if the 

attractive force at a certain position, is balanced against that 

of gravity, it is possible to obtain a stable equilibrium position 

for the suspended object. 

3. Sys~ern Description 

3.1 Circuit Equation 

The LC circuit in Fig. 1 can be represented as 

~
t 

_ _ ldt 
deLi) R ~ 0 E . ( ) 
~ + I + -c- = Sln oot 

3.2 Current Equation 

(1) 

In real suspension systems it has been found: (i) the coil cur

rent is a suppressed carrier amplitude modulation signal in the 

fonn 

I (t) =Xsin( cot) + Bcos (COt) 

(ii) A and B are functions of the gap 

X =X(x, t), jj =i3(x, t) 

3.3 Force Equation 

(2) 

The attractive force acting on the suspended object is deter

mined by 

- 1 dl'2 F=---l = 
2 dx 

_1 dl X [X2 + jj2 + ij2 - X2 cos(2wt) + Xjjsin(2cot) 1 
2 dx 2 2 

(3) 

Compared to the source frequency, the movement of the sus

pended object is relatively slow, only the low frequency com

ponents in the above equation is important to the movement 

of the suspended object. Therefore, the components with 200 

can be neglected. As a consequent, the force equation (3) can 

be approximates by 

F"" _1 dl x (X2 + jj2) 
4 dx 

3.4 Relationship Between Inductance and Gap 

(4) 

In order to calculate the attractive force using (4), dltdx 

should be available. The functional relation of inductance l 

and gap x can be detennined experimentally. The following 

approximate fonnula is often used to express this relation. 

- _ k j 

L(x)=L·+~k 
x + 2 

(5) 

where 1(1,1(2 are positive constants and L= denotes the induc-



tance when the gap is infinite. From (5), diJdi can be ob

tained. 

3.5 Equation of Motion 

The equation of motion of the suspended object is 

",2 F Fd 
X=~m+I ~ 

These five equations, (1), (2), (4), (5) and (6), together repre-

sent the suspension system shown in Fig. 1. 

4. Static Behaviors 

4.1 Current Equation 

Next, let us consider the static behaviors of the magnetic sus-

sinoot r-------------------------, 

Fig. 2 Current feedback stablization method 

pension system using the current as feedback signals, as shown 

in Fig. 2. 

In order to make the suspension system stable, it is supposed 

that the amplitude of the source voltage should be controlled 

pension system using a tuned LC circuit shown in Fig. 1. When as 

the suspended object stays in the equilibrium position, induc- E = Ee - Ec (12) 

tance Le is a constant, the LC circuit becomes a linear net

work, and (1) becomes an ordinary differential equation. 

L d\ Rdie ie - E () 
e dt2 + dt + C - erocos rot (7) 

where Ee is the source voltage at the equilibrium state, and Ec 

is the control voltage. We take the change of amplitude of the 

coil current as the feedback signal, 

H = (Ae + A)2 +(Be + B)2 - (Ae + B.)2 "" 2A,A + 2BeB (13) 

By solving it, we can obtain the coil current at the equilibrium The control law we have employed is a proportion and phase 

state. lead compensation, 

ie =Aesin(rot) + Becos (rot) 

where 

B = EeP P = _1 __ L ro 
e p2 + R2 Cro e 

(8) 

(9) 

E (s) = K I-l(s) + l+nTs H(s) 
c p'~ I+Ts (14) 

where n is an integral number greater than one, T and K are 
p 

positive constants, and "s" denotes the Laplace transforma-

tion. 

4.2 Force Equation 5.2 New Circuit Equation 

The attractive force at the equilibrium state can be obtained It is clear from the motion equation, (6), that in order to ob-

by substituting (9) into (4). tain the closed system transfer function, i.e., the relationship 

(10) 

4.3 Force Equilibrium Equation 

At the equilibrium state, the attractive force should be equal 

to the weight of the suspended object. 

Fe=mg 

5. Current Feedback Stabilization 

5.1 Basic Concept of Current feedback 

(11) 

As mentioned in section 3.2, the coil current contains the dis

placement information of the suspended object. This fact pro

vides for the possibility of stabilizing the suspension system 

using current feedback instead of direct position feedback. The 

basic idea of the current feedback control is to control the 

amplitude of the source voltage and thus to stabilize the sus-

between the movement of the suspended object, i, and the 

disturbance force F d' we must first get the relation of the mag

netic force F and the gap i. From (4), we can see that the 

function relation of F and the gap i is depending on the rela

tions between A, jj and i. Therefore, we should start our analy

sis from solving (1), the equation of the tuned LC circuit. 

Inserting (12) into (1), we have the new equation represent

ing the LC circuit with current feedback control. 

or 

d\il) dl 1 ( ) () dEc. ---;]i2" + R dt + C = Ee - Ec rocos rot - dt sm(rot) (15) 



5.3 New Current Equation 

Inserting (2) into (15), and comparing the coefficients of 

sin(oot) and cos(oot) separately, the next two equations can be 

obtained. 

d2(lA) + RdA _ 200 d(lB) + [l-l002]A _ RooB 
dt2 dt dt C 

dEc 
=(ft (16) 

d2(lB) + RdB + 200 d(U) + [l_1oo2]B + RooA 
dt2 dt dt C 

= [Ee - Ec]OO 

Near the equilibrium state, system parameters can be approxi

mated in the forms 

i=xe+x, l=Le+ L, 

A =Ae +A, B = Be + B, L= K,?C 

dl _ dl di dL I d2l1 
dt - di dt Kx= di x K2x = di2 

• x. 

(17) 

dll dll d2l1 di i = di x + di2 X = Kx + K2,?C 
e x, 

Inserting these formulae and system static characteristics, (9) 

into (16), and neglecting the nonlinear components of minute 

variation, we have 

(18) 

Their Laplace transformations are 

(L.,s2 + Rs + POO)A(s) - (as + b)B(s) 

= (cs2 +ds + e) X(s) -sEis) 

(as + b )A(s) + (L.,s2 + Rs + pOl )B(s) 

= (tS2 + gs + h) X(s) -O)Eis) 

where 

(19) 

Inserting control equations (13) and (14) into (19), the follow

ing two equations are derived. 

where 

93 = TLe 

9 2 = L. + T[R + 2(n + Kp)Ae] 

9 1 = R + Tpoo + 2( 1 + K p)A. 

90 = pOl 

X3=0 

X2 = T[ 2( n + K p )B. - a] 
Xl=2(I+Kp)Be-Tb-a 

Xo=-b 

't3 = 0 
't2 = Ta 

't l = T[200(n + Kp)Ae + b] + a 

'to = 200( 1 + Kp)Ae + b 

(

03 = Tc 
O2 = Td+c 
01 = Te +d 
00 = e 

(

(J3 = Tf 

(J2= Tg + f 
(Jl=Th+g 
(JO= h 

(20) 



'1'3 = TLe 
'1'2 = TR + Le 

'1'1 = T[2ro(n + Kp)Be + pro] + R 

'1'0 = 2ro( 1 + K p )B e + pro 

Solving (20), we can get the functional relations between A(s), 

B(s) and X(s). 

6 
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A(s) = k=O X(s) 
f y~k 

k=O 

(21) 

6 
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B(s) = k=O x(s) 
f y~k 

k=O 

(22) 

where 

Yk= ± e·'I'k_-± X·'tk-· (k = 0,1,2,3) 
j=o} } j=o} } 

Yk = 1: e'l'k_· - 1: X ·'tk_· (k = 4,5,6) 
j=k-3} } j=k-3} } 

5.4 New Force Equation 

Near the equilibrium state, the force equation (4) cab be sim

plified to 

F = -t ~; x ()? + jJ2) 
'" Fe - qlA - q2B - q3X 

Change of force due to gap variation is 

F= -qIA-q2B-q3X 

where 

QI=K;leI2, Q2=KxV.t 2, Q3 = K2x(A: + B:)I 4 

(23) 

Inserting (21) and (22) into (23), we have the new force equa-

tion as 

(24) 

where 

~k= QIPk +Q211k + Q3Yk 

5.5 Closed System Equation 

Inserting (24) into (6), the closed system transfer function is 

available. 

(25) 

where 

(Xk = mYk_2 +~ k (26) 

Equation (25) is what we are searching for, the transfer func

tion model for the tuned LC circuit magnetic suspension sys

tem controlled by current feedback. 

5.6 System Stability 

The characteristic equation of the closed system is 

f (X Sk = 0 
k=O k 

(27) 

From the definitions of C\, formulae (26), we can see that it 

is a very hard work to give a formula which specify the values 

of K , T, n, to make sure all the solutions of (27) have negative 
p 

real parts and thus ensure the system stability. An practical 

way is to choose them via a numerical calculation. 

6. Suspension Experiment 

Using the current feedback stabilization method mentioned 

above, we have carried out a suspension experiment in an one

degree-of-freedom system shown in Fig. 3. The electromag

net is fastened to a parallel leaf spring, which moves in the 

horizontal direction and its restoring force balances against 

the magnetic attractive force when the spring moves to the left 

of its natural position. If the suspension is successful, the elec

tromagnet should rest stably in a position to the left, with a 

certain gap respect to the target. The experimental parameters 

are listed in Table I. Fig. 4 shows changes of the source volt-
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m 
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Ks 

Table I System parameters 

9.54 ()IF) 

16.4 (ohm) 

19.2 (mH) 

-5.75 (Him) 

5000 (H/m2) 

1.07 (kg) 

0.94 

1.37 (kgf/mm) 

E 42.4 (V) 

f 400 (Hz) 

xe 1.4 (mm) 

Ae 2.23 (A) 

Be -0.889 (A) 

n 5 

T 0.01 

Electromagnet 

• >-Restoring 
force 

spring 

Fig. 3 Schematic of expeimental system 

age, coil current and the movement of the suspended object in 

the case of no control. It is noted that the movement of the 

magnet (suspended object) was divergent. Fig. 5 shows changes 

of the source voltage, coil current and the movement of the 

suspended object in the case that the current feedback control 

was introduced. The magnet finally rested stably at a 1.4 mm 

distance away from the steel target. 

7. Conclusions 

In this paper, a new dynamic stabilization method for tuned 

LC circuit magnetic suspension systems, the current feedback 

stabilization method, has been discussed. Its effectiveness is 

confirmed by experimental results from an one degree-of-free

dom suspension system. We believe that this method will play 

an important role in the future research and applications of the 

electrostatic and magnetic suspension systems employing tuned 
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LC circuits. 
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