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Abstract 

This paper deals with the discrete time sliding mode control 
of a rotor-magnetic bearing system with zero power scheme 
using a permanent magnet. We propose a new actuator in 
which the flux circuit of the zero power scheme using a 
permanent magnet can be varied. A mathematical model of 
zero power sceme using permanent magnet and a flexible 
rotor is derived. The reduced-order model is described for the 
controller by eliminating higher-order modes of the 
mathematical and electrical magnet interation system beyond 
the fourth flexible mode. The sliding mode control system 
for reduced-order model is designed using the discrete time 
VSS observer. The simulations are done for the two cases of 
lift off and rotations. The two unstable rigid modes can be 
easily controlled with good stability, and the spillover 
phenomena of the higher-order modes are not generated. It is 
also clear that the proposed discrete time sliding mode 
controller has robustness against model parameter variations 
and external disturbances, compared with the conventional 
control methods like PID control and disturbance cancellation 
control. 

1 Introduction 

The "dream" of supporting an object on a non-contact basis 
has existed for a long time. The most important object of 
this is to gain freedom from lubrication and mechanical 
friction that necessarily accompany contact, thereby 
completely nullifying the energy loss which has been an 
obstacle of high-speed operations and fast rotations. This 
"dream" was attempted, at an initial stage, as levitation by 
means of only a permanent magnet. This was shown by 
Earnshaw to be impossible. Thus, the magnetic levitation 
and magnetic bearing technology became deeply intertwined 
with control theory to such an extend that it became a field 
which contributed positively to control theory as a typical 
model of the stabilization control of unstable systems. 
Several years have already passed since magnetic bearing 
control systems were put into practical use, but almost all 
these systems are small rotational machines as represented by 
turbo molecular pumps. These have common points in 
terms of bearing rigid rotors, having analog PID control, and 
being active magnetic bearings based on 5-axis control type 
attractive systems in most cases. With these achievements in 
the background, the expectation for magnetic bearing 

systems has increased to an even higher degree, with the 
result that studies and developmental work on technology for 
higher performance are being carried out. In particular, some 
of the recent research subjects and topics[1]-[4] may be listed 
as follows: (1) Studies on shifts from the conventional 
analog con trol to digital control using digital signal 
processors. (DSPs); (2) Studies on shifts from the 
stabilization control of PID control to advanced control in 
which modern control theory, robust control theory, and 
learning control, as well as design methods, such as control 
systems with disturbance compensation, are applied; (3) 
Studies of flexible rotor and magnetic bearing control 
systems which pass higher-order flexible modes;(4) Studies 
of sensorless magnetic bearings for estimating and 
controlling rotor displacemen ts from the currents of 

magnetizing coils by the use of observer theories and others 
or for using PWM carrier frequency waves; (5) Studies for 
the joint use of electromagnets as magnetic bearings for 
levitation control and also as motor stators for rotation 
control; (6) Studies of zero-power type magnetic bearings for 
energy savings in which permanent magnet and 
electromagnets are jointly used;(7) Studies of 
superconducting magnetic bearings which possess high 
rigidity and high load; (8) Studies of power amplifier and 
actuator design for realizing ultra-high-speed rotations; (9) 
Studies for increasing reliability by the elucidation of non
linear phenomena in magnetic fields or the elucidation of 
transient phenomena during touch downs in emergencies; 
(10) Studies of test results for applications to actual 
machines and for attempts at applications to new fields . 
One of the author has been aggressively carrying out to 
apply the latest advanced control theory for magnetic bearing 
control[5J-[9]. In particular, it is confirmed for us that 
sliding mode control as nonlinear control strategy is very 
useful for magnetic bearing system[lO]-[Il]. This paper is 
concerned with not only (1),(2) but also (6). The bias 
attractive force of the electromagnet using a bias current is 
replaced by the attractive force of the permanent magnet to 
save an energy. The electomagnet is used for only active 
control. We propose a new type zero-power magnetic 
bearing system using permanet magnet which can vary 
attractive force. Therefore, it becomes very easy to tune a 
controller because of variable bias attractive force. Also, we 
propose a convenient and sipmle discrete time sliding mode 
control system design with VSS observer for magnetic 
bearing control. 
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2 Zero-Power Magnetic Bearing Systems 

2.1 Concept of Zero-Power Magnetic Bearing 
Figure 1 shows the concept of zero-power magnetic bearing 
system. The actuator consists of a permanent magnet and a 
electoromagnet as a hybrid magnet. The steady-state 
attractive force is provided by a permanent magnet and the 
control attractive force is supplied by electromagnets. It is 
easy to change a attractive force of permanent magnet. So, 
all of the steady-state attractive force can be provided by only 
permanent magnet or some ratio of it is provided by 
electromagnet. This is the most original zero-power 
magnetic bearing. 
The adjustment of the attractive force is carried out by a 
adjusment screw as shown in Fig.1. The flux path of the 
magnetic circuit in the case of zero-gap between the 
permanent magnet and the head of the screw. The attractive 
force for the rotor is almost zero in such case. On the 
contrary, the flux path is b in the case of a big-gap. In that 
case, the maximum attractive force arises for the rotor. 
Figure 2 shows the relation between the attractive force and 
the gap of permanent magnet. It is a strong nonlinear 
characteristics. 
2.2 Test Rig 
Figure 3 shows the cross-sectional view of the experimental 
setup of zero-power magnetic bearing system. The four 
radial magnetic bearings are provided by a zero-power 
magnetic bearing and a couple of repulsive permanet magnet 
without control is used for a axial magnetic bearing. The 
high frequency motor is installed at the middle of the rotor. 
The rotor will be completely non-contact levitated with 
control. An optical sensors are used for measurements of 
the rotor displacements to avoid an interation with magnetic 
field. 

3 Modeling of Flexible Rotors I Zero
Power Magnetic Bearing Systems 

3.1 Modeling of Magnetic Bearing 
The attractive force of a mono-pole of magnet is written as 
follows: 

f=~B2 (1) 
Jlo 

where A is the air gap area, B is the flux density, Jlo is the 
permeability. Equation (1) is rewitten as 

f = A sz = A [N 0 0 + i) r (2) 
II /I l Xo+X 
ro ro Jl+/IO 

where io is the bias current, Xo is the steady-state gap length, 
x is the control gap, N is the number of winding turns, i is 
the control current, l is the flux length, J.1. is the permeability 
in the magnetic body. It is assumed that the steady-state 
attracti ve force is provided by the bias current of 
electromagnet. 
Using the Taylor series expansion for small values of j and 
x, we can obtain the following attractive force with linear 
terms, 

j(X./) =/0 + I ~fl x + I~!I i + .... 
OXr-Q alx=O 

i=O 1=0 

(3) 

The second and the third terms show the first order 
purterbated attractive force in Eq.(3). The each coefficient is 
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given by 

where 

I all X=-kIX, ax x=O 
;=0 

(4) 

The total attractive force is written by the first-order 
approximation as follows: 

f~~- x+~i m 
Considering the pair of attractive forces, the magnetic force 

f due to the electromagnet along the radial direction can be 
modeled as the following equation: 

j=iI-h = -2klX+2k2i (6) 
The steady-state attractive force is supplied by a permanent 
magnet in the case of zero-power magnetic bearing, the 
coefficients in Eq.(6) are given as 

A 2 AN 
k\ =: 2---;--z-x-;;--BbiGS , k2 =2--z--x:;;-Bbins (7) 

J-lu (-+~) J-lu(-+--) 
11 J-lu fL J-lu 

From Eq.(6), 

1=-2kJx+2k2i=-CIBbins2X+ (8) 

where 
4A 4AN 

=: ----- , C2 = ---
21xo lxo 

J-lu (Ii + J-lu ) 110 ( Ii + J-lu ) 

For simplicity, the following equation is used for control 
system design in this paper. 

I = - 4 10 x + 412- i (9) 
Xc 10 

where 
A 2 I-4JN io 

10 = I-4J Bbias ' Bbins = ~ 

.. lxoxo I Xo 
It IS assumed that Ii + J-lu == J-lu because of Ii« Po . 

In this case, in Eq.(9) is used as an equivalent bias current 

to make a decision of a gain from coil curent to attractive 
force. 
3.2 Modelf- -" 'DLxible Rotor 
The free-free flexible rotor becomes the fan owing equation of 
motion by the application of the finite element method 
(FEM): 

Mij+Kq= 0 (10) 
where q = [qi ... q5 f , qi == [X; 8i ]. when M denotes a 
mass matrix,K is the stiffness matrix, and q is the 

generalized displacement vector. The rotor is divided into 
four elements as shown in FigA. Table 1 shows the 
parameters used for modeling. 
3.3 Modeling of Flexible Rotor I Zero-Power 
Magnetic Bearing 
The flexible rotor shown in Fig.l is restricted by the 
attractive forces given in Eq.(9). This resuts in 

where 
MiJ.+Kq=Fp (11) 

[ ]
T 

_0010000000 
F-0000001000 

The bias attractive forces and the control forces of Eq.(1l) are 
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separated as follows: 
Mij+KJq=FI It (12) 

where 

U=[i/ irf, FI=-P2F, KJ=K+Kp 
Kp = diag ( - PI' 0, 0, 0, 0, 0, 0, 0, - PI' 0 ) 

Using the modal analysis technique and selecting the 
normalized modal matrix P and q= 'l'~, Eq.(12) is 
transformed to the form in modal coordinate as follows: 

~+A~+dc;==Fou (13) 
where 

I=pT J r,r1 =!t 
A=:2 ~ U, Fa =: 'l'T FI 

where A is the damping matrix. The damping ratio is 
determined experimentally. The state equation of the 
electromagnetic-mechanical system is given by 

ij=_4f xf +Bf u 

y= C~Xf 
(14) 

where 

[ 0 I 1 _ r 0 1 _ [;:T tTY 
A f = _[22 -A j , -lFoJ' xf -., ':0 

r ] [0 0 1 0 0 0 0 0 0 0] Cf =: L Co POCo:::: 0 0 0 0 0 0 1 0 0 0 

Because this MIMO system is originally unstable in an open 
loop, the control is to levitate the rotor and 
maintain the stability. In this case, there are only two 
unstable rigid mode, and the flexible modes are essentially 
stable, It is complicated to design a controller including 
full-order models for this high-order flexible system. 
TIlerefore, the construction of the reduced-order model is 
considered from the stand-point of stabilizing the two rigid 
modes and controlling the vibration of flexible modes. The 
reduced-order model is constructed by trancation of the 
higher-order modes in modal coordinates. Here, the state 
equation and the output equation covering as far as the second 
order mode which means rigid modes are written as 
follows: 

where 

Xr =: Arxr + -ru 
y= Crxr 

Xr =: [ ~I ~2 ~I ~2 JT Y :::: [x2 x4 f 
xr ER4 uER2 YER2 

Control for Zero-Power Magnetic 
Bearing System 

First of all, we designed the analog PID control system to 
compare with a discrete time sliding mode control 
considering the performance. The design center (CAE 
software for electronic circuit simulator) was used for PID' 
controller design. Figure 5 shows the step response at lift
off. The main purpose of this research is to save the electric 
power supply. It is necessary for full active magnetic 
bearing without permanent magnet to supply the total 
current 8A for levitation. On the other hand, it is enough for 
zero-power magnetic bearing system to supply the total 
current lA. It is found that a zero-power magnetic bearing 
system can drastically save an energy. 

5 Design of Discrete Time Sliding Mode 
Control System 



224 

5.1 Design of Hyperplane for Discrete Time 
System 
This section will discuss the design of the digital controller. 
As a limitation of the structure, this magnetic bearing 
system has only two output feedbacks which can be 
measured directly. Therfore, the adaptive variable structure 
system (VSS) observer is used for system state estimation. 
Considering the reduced-order model system given in Eq.(15), 
the equivalent discrete-time system is found as 

X/k+ 1) = tPX/k) + ru(k) 

y(k) = CrX/k) 
(16) 

The switching function is defined by 
(],(k)=SdXP) (17) 

The following equation is obtained when the system is in 
sliding mode, 

(]'(k) = (]'(k+ 1) = (]'(k+2) =... (18) 
The equivalent control input is written from Eqs.(16),(17) 
and (18) as follows: 

Ueq(k) = - (Sdrr I Sd( tP-l)xr(k) (19) 

Substituting Eq.(19) into Eq.(16), we have the equivalent 
control system as follows: 

xP+ 1).= {tP - reS rr 1 Sd( (/J-l)} xP) (20) 

We choose the (n-m) closed loop eigenvalues of Eq.(20) so 
that they lie within the unit circle. These eigenvalues 
correspond to the (n-m) nonzero eigenvalues of the equivalent 
system. In this paper, the stability-degree specification 
method is applied in order to stabilize Eq.(20). The system 
matrix Ar with stability-degree specification is rewritten by 

Ae=Ar+£l (21) 
Sdin Eq.(20) is obtained as follows: 

T :r - 1:r (22) Sd=(R+rpdr) rPd(/J, 

where Pd is the solution matrix of discrete time Riccati 
equation for the positive definite matrices Q, R as follows: 
Pd - (/J/ Pd tP, + (/JeT Pd r (R + r T Pd r) r p} tPe - Q = 0 

5.2 Design of Sliding Mode Controller 
After the design of the switching surface, the next important 
aspect of VSS is guaranteeing the existence of the sliding 
mode. The variable structure system can be thought of as a 
closed-loop system with an adaptively varying state feedback 
gain. Therefore, the type of control law considered here 
consists of two independent functions: a linear state feedback 
control function [tL and nonlinear control function [tNL: 

where 

{

U(k) = UL(k) + UNL(k) } 

uL (k) = K,X/k) = Ueq(k) 

UNL (k) = - ark) sgn[ (]'(k)] 

K, = - (Sdrr 1 Sd( tP-l) 

(23) 

We proposed the VSS controller design without 
chattering[10],[1l]. The conditions without chattering is to 
satisfy the following inequality for the switching functions 
a (k) and a (k+ 1 ). 

O::;a(k+l)<a(k) a(k»O 

a (k) < a (k + 1) ::; 0 a (k) < 0 (24) 

The control input (23) is designed so that a (k) in Eq.(23) 
satisfies the inequality (24). From (]'( k+ 1 ) = SdXP + 1 ), 

(]'(k+ 1) = Sd{ (/JxP) + re UL (kJ+ UNL (k) )} (25) 

Substituting Eq.(20) and Eq.(23) into Eq.(24), 
(]'( k + 1) = (]'(k) - SdrUNL (k) (26) 

The condition to satisfy Eq.(24) is given by Eqs.(26),(24) as 
follows: 

(],(k+l):S;(],(k)-Sdra(k) (27) 

Therefore, we obtain II Sdrl ark) :s; (]'( k). In same manner, 

(],(k+l)?(],(k)-Sdra(k) (28) 

So, wehaveISdrlla(k):s;I(]'(k)l. Finally, the follwing 

expression is gotten. 

~(]'(k)1 
ark) = 7] Ilsdrl 

The nonlinear control input without chattering is 
I (]'(k)1 

UNL (k) = - 7]-1--' sgn[ (]'(k)] 
Sdr 

(29) 

(30) 

where 0 < 7]:S; 1 , (]'(k+ 1) (]'(k) > O. Equation (30) is 
rewritten as follows: 

(31) 

5.3 Design of Discrete Time VSS Observer 
It is necessary for sliding mode control to obtain every state 
variable in general. We need a state observer to estimate for 
unmeasured state variables. The discrete time VSS observer 
as sliding mode observer is applied because the system has 
some disturbances and some uncertainty. 
Since the system is observable, the all eigenvalues of the 
following equation tPo can be placed within a unit circle 
using the matrix Ko . 

tPo = (/J - Ko C r (32) 
Here we applied an discrete time optimal control theory for 
design of Ko. The discrete time VSS observer is defined by 

i(k+ 1) = tPoi(k) + KoY(k) + MCji) + ru (k) (33) 
where 

5.4 Stability of Sliding Mode Control System 
with VSS Observer 
Each sliding mode control system as a regurator and sliding 
mode observer as a estimator must be stable respectively. 
However, the total stability including a regulator and a 
estimator is not guaranteed. So, we consider the whole 
stability of closed loop system with the sliding mode control 
system and the VSS observer system. 
The discrete time sliding mode controller and the discrete 
time VSS observer are shown in Eq.(23) and Eq.(33). It is 
very difficult to analyze the characteristics because these 
equations include nonlinear term. Therefore, we assume that 
the regulator and the observer are on the hyperplane as 
sliding mode. We discuss the closed loop stability of such 
case regarding as the equivalent control system. Equations 
(23) and (33) yield the following form. 

u (k) = uL( k) = K J.ck) (34) 
i(k+l) = ""oi(k ) + Koy(k) + rUCk) (35) 

Equations (16),(34) and (35) are combined as follo ws: 

[
Xr(k +l)]=[ (/J -reSdrr ' Sd(tP- l) j[X/klj(36) 
i(k+l) KO C r tPO+r(Sdrr 'Sd «(/J -l) irk) 



If the whole eigenvalues except the number of control inputs 
are stable, the closed-loop system becomes stable on the 
condition every state variable is constraint in sliding mode. 
In the same manner, this approach is used for a full-order 
model with the truncation modes. The full-order model is 
defined by 

Xf(k+!) = tPfXf(k) + T f U (k) 

y(k) = CfXf(k) 
(37) 

Using Eq .(37), we have the following equation taking into 
account the higher-order modes. 

[x! (k+!)1 = tPf - Tf(SdTr 1 Sd( tP-l) [X/k)] 

X(k+!) KoCf tPO+T(SdTr1Sd(tP-l) X(k) (38) 

In the case that Eq.(38) could be stable, the sliding mode 
control system with the sliding mode observer has a strong 
robustness . It is very important to determine the matices 
Sd, Ko to stabilize Eq.(38). 

6 Simulations and Experiments of Discrete 
Time Sliding Mode Control 

6.1 Simulations at lift-off 
Table 2 shows the parameters used in the simulations. 
Figure 6 shows the block diagram of discrete time sliding 
mode control. The sampling time of discrete time sliding 
mode controller was 400 f.1sec . The step response at lift-off 
using discrete time sliding mode control. It is found that the 
performanes of Fig.7 is excellent and superior to PID 
control. 
6.2 Experiments 
Figure 8 shows the schematic diagram of experiments. 
Figure 9 shows the step response at lift-off. It seems that 
the spillover phenomena occur from Fig.9. However, the 
system does not become unstable. We ran up the rotational 
speed up to 4500 rpm successufully. Figure 10 shows the 
shaft vibration at 4500 rpm. It was impossible to increse a 
rotational speed up to 4500 rpm for the analog PID control 
because of big unbalance mass. However, the rotor can pass 
through the rigid critical speed with small vibration in 
discrete time sliding mode control. It was impossible to run 
up to higher rotational speed because of a brake torque caused 
by eddy current. We have been trying to build up a new 
rotor which means a laminated rotor to reduce eddy current 
loss. 

· · · 

Coil gain 

tns..:r.. ..... _ ......... 0 ..... _ ........ _ .. _ .... __ ...... · ...... :.0 ...... ; ....... . 
Fig. 10 Block diagram of discrete time sliding mode control 
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Table 1 Parameter of Fig. 4 

ml 0.260 kg II 68.00mm 
m2 0374 1\ 92.00 
mJ 0.100 1\ 92.00 
m. 0.374 1\ 68.00 
ms 0.260 d 13.95 
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Fig. 7 Step response at lift-off using PID analog 
controller 
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Fig. 11 Step response at li ft-off using discrete time 
sliding mode control (Computed) 
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Table 2 Parameter used for control system design 

Controller Observer Model 
I:: 15 P 10 fo 4N 
0 0.002 r 0.005 io 1.3 A 
rp 10000 

[10 0] TJ 0.2 Q 10 , Xo 0.0005 m 

Q 1"4 o 10 10' 

R ha R ht:l 

Fig. 12 Schematic diagram of experimental setup 
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Fig. 13 Step response at lift-off using discrete time 
sliding mode control (Experimental) 
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Fig. 14 Experimental result of time history response at 
4 500 rpm with discrete time sliding mode con
trol 

6 Conclusions 

We proposed a new zero-power magnetic bearing with 
variable attractive force of permanent magnet. Also, we 

designed a discrete time sliding mode control system using 
the proposed convenient and simple discrete time sliding 
mode control system design scheme. The conclusions are 
summarized as follows: 
(1) We proposed a new zero-power magnetic bearing with 
variable attractive force of permanent magnet. It is very 
easy to tune a control system. 
(2) We carried out the modelling for a zero-power magnetic 
bearing system. The common and different points were made 
clear. 
(3) It was made sure that the discrete time sliding mode 
control is superior to conventional a PID control. 
(4) It is very useful for a zero-power magnetic bearing 
system proposed in this paper to save a energy. It is hoped 
that such magnetic bearings will be applied in future. 

References 

(l)G.Schweitzer (edited), Proc.of the 1st International 
Symposium on Magnetic Bearings,1988 
(2)T .Higuchi (edited) , Proc.of the 2nd International 
Symposium on Magnetic Bearings,1990 
(3)P.Allair (edited), Proc.of the 3rd International Symposium 
on Magnetic Bearings, 1992 
(4)G.Schweitzer(edited), Proc.of the 4th International 
Symposium on Magnetic Bearings,1994 
(5)K.Nonami,H.Ueyama and Y.Segawa, H~ Control of 
Milling AMB Spindle, JSME International Journal, 39-3, 
1996, to appear 
[6]K. Nonami and T.Ito, f.1, Synthesis of Flexible Ro tor 
Bearing Systems, IEEE Trans. on Control System 
Technology, Special Issue on Magnetic Bearings, ·1996, to 
appear 
[7]N.Ide, K.Nonami and H.Ueyama, Robus t Control:of 
Magnetic Bearing Systems Using f.1, Synthesis with 
Discriptor Form, Proe of the 3rd Motion and Vibration 
Control, 1996, to appear 
[8]S.Sivrioglu and K.Nonami, LMI Based Gain Scheduled 
H~ Controller Design for AMB Systems under Gyroscopic 
and Unbalance Disturbance Effect , Proc.of the 5th 
International Symposium on Magnetic Bearings,1996 
[9]S.Sivrioglu and K.Nonami, Advanced Mixed H2 1H_ 

Control Design for Active Magnetic Bearing Systems, 
Proc .of the 5th International Symposium on Magnetic 
Bearings, 1996 
[lO]H.Tian and K.Nonami , Robust Control of Flexible 
Rotor-Magnetic Bearing Systems Using Discrete Time 
Sliding Mode Control, JSME International Journal, Ser.C, 
37-3, 504-512,1994 
[ll]K.Nonami and H.Tian, Sliding Mode Control, Corona 
Pub., 1994 


