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Ab.stract: This paper is concerned with the design and 
control of a spindle-magnetic bearing systems using with 
the discrete time sliding mode control method. A variable 
structure system (VSS) disturbance observer, with which the 
state vector and disturbance can be estimated 
simultaneously, is investigated to compensate the 
mismatched disturbance loaded on the rotor. A new discrete 
time sliding mode servo controller which can attenuate the 
chattering phenomenon is proposed by using the VSS 
observer. The usefulness of the proposed controller is 
demonstrated through the computer simulations and 
experiments. 

1. Introduction 

In the design of magnetic bearing systems, it is 
necessary to use an asymptotically stable and robust 
controller for magnetic bearings to support flexible rotor 
systems which pass higher-order flexible modes. However, 
the controller should be constructed with reduced order 
models to control the full order vibration system because of 
the limitation of computation time. Recently the linear 
robust control theory has recently been developed and 
used to control the flexible magnetic bearing systems [1-2]. 
But the plant model used in these references was simplified 
and idealized. 

As a precise and robust nonlinear control theory, the 
variable structure system (VSS) with sliding mode control 
(SMC) has been considered for the magnetic levitation and 
magnetic bearing systems[3-4]. However, there exists some 
drawbacks which was imposed on SMC in many practical 
applications[5-6]. One of these drawbacks is the resultant 
control may yield over conservative feedback gains due to 
overestimated bounds on system perturbations, which can 
cause an inevitable chattering. Another drawback is the 
uncertainties and disturbances should be required to 
guaranteed the matching conditions. 

Based on the studies of linear observer design, 
some research has recently been conducted on SMC with a 

linear disturbance observer to obtain the lower switching 
gains and less chatter[7-8]. However, the switching gains of 
SMC in these schemes are difficult to be determined and the 
mismatched disturbance problem is not discussed. In the 
previous works[9-1O], the discrete time sliding mode 
controller was designed to flexible rotor-magnetic bearing 
systems which is shown that the chattering phenomenon can 
be alleviated in sliding motion. In this paper, we present a 
new design of discrete time sliding mode controller by using 
a discrete robust VSS disturbance observer for the flexible 
rotor-magnetic bearing system(FR-MBS) used in the 
grinding spindle. The simulations and experiments for this 
flexible rotor-magnetic bearing system are given which 
verify that the discrete time control system is robust to 
uncertainty and can compensate the imbalance. 

2. Modeling of plant 

The flexible-rotor magnetic bearing model is made 
from a high speed grinding spindle, which can be regarded 
as consisting of 12 elements of a model based on the finite 
element method (FEM) shown in Fig.l. 

2.1 Flexible rotor dynamics 
According to the FEM model shown in Fig. 1, the 

discrete model of twenty-six orders can be written as 
Mij +Crj +Kq = 0 (1) 

v AMB-R o seDr 

o 0 

Figurel Model of flexible rotor-magnetic bearing system 
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where 

q :::: [XI' aI' X 2 , a2 ,· .. , X 13 , al3 f 
and x}' (j:::: 1"" ,13) represent displacement and angle 

of the mass on this rotor, respectively. in particular, Xs and 

xII represent the positions where the actuators are located, 

and and xl2 represent the positions where the sensors 

are same, the voltage of the actuators in one direction is 
given by 

v ~ --2k v+2L~+2Ri +2e 
v dt 

where 
H2 

~ PO" v L=-·----· 
2 

lioN A . 
=----10 

2xo 2 

(7) 

a '. Ai E R26x26 is the mass C E R26x26 is and v:::: dx / dl the roior velocity at the position the 

the matrix and K ER26x26 is the stiffness matrix. 
Considering the pair of attractive forces, the 

magnetic force due to the electromagnet along the radial 
direction can be modeled as the foHowing equation: 

p:::: PI' - P~ :::: 2kxx - 2ki i 

where 

f1.a AN2i6 k = 2p~ k :::: 2po 
Po = 2 x I. 

4xo xa 10 

and is the bias attractive force. Equation (2) indicates 

the total forces of the actuators in one direction. 
The flexible rotor shown in Fig.l is suspended by the 

attractiyc forces given in Eq.(2) at positions 

The result is 
A1ij + Cq + Kg :::: Fp + D 

where 

[
OOOOOOOOlOOOOOOOOOOOOOOOOO]T [Ps ] 

F = 00000000000000000000100000 P = PII 

Ps = 2kxsxs - 2k,s is: force at position Xs 

Pll = 2kxll xll - 2kill ill : force at position xll 

and D E R 26xl represents the disturbance. 

and XII' 

(3) 

Separating the bias attractive forces and the control 
forces ofEq.(3), the result is 

+ 
v,herc 

. ..]T KKK 
I:::: 15 Ill' 0:::: + i 

[
00000000 - 2k,S 00000000000000000 JT 

Fa:::: 00000000000000000000 - 2kill 00000 

(4) 

Ki :::: diag(OOOOOOOO - 2kxs 00000000000 - 2kxII 00000) 

Using the modal analysis technique, we can choose 

the normalized modal matrix 'P E R 26x26 and obtain the 
equation 

q = \¥~ (5) 

where ~ ER 26xl is the modal coordinate. Equation (4) is 

transformed to the form in modal coordinates as follows: 

~+ A~ + Q2~:::: fo i+ i (6) 

where 

I:::: ,¥T M'¥ Q2:::: 'PI' Ko'P A:::: 2S'Q:::: ,¥T Of' 
T ' T fa :::: \¥ Fa d:::: '¥ D:::: rId 

2.2 Actuator dynamics 
Assuming the parameters in these two electromagnets 

actuators, R IS the coil resistance, e represents the 
disturbance. 

2.3 Plant dynlUllics 
Considering dynamic perfonnance of Eq.(7) at two 

positions( xs, XII) of the actuators and rotor dynamics of 

Eq.(6), the state equation of the electromagnetic-mechanical 
system can by given by 

xf = + u +Df 

where 

xf =[( 

E :::: [OOOOOoooal 00000000000000000 l 
J OOooOOOOOOOOOOOOOOOOa2 00000J 

a l :::: kvs / Ls , °2 kV11 / Lll 

E, ~[-:: o 1 [_1 
2:,.1 

IE:::: 2Ls 
_!lLj u 0 

Lll 

If the spindle di.splacement near the magnetic bearings 
be measured, the output equation is 

y::::Cfxf =[X4 x12 f (8b) 

where 

Cf = [F'T,¥ 02 X 28] 

F':::: [0000001 oooooooooooOOOOOOOO]T 

00000000000000000000001000 

The reduced order model is constructed by truncation 
of the higher order modes in modal coordinates. Here, the 
state equation and the output equation induding up to rth 
mode are written as follows: 

where 

Xr :::: Arxr + Br u + Dr 
T 

y:::: Crxr :::: [X4 X12] 

Xr ::::[~I ~2 ... ~r ';1 ~2 ~r i5 illt 

(9a) 

(9b) 

The design of the control system is carried out for 



the case in which only the rigid modes and the first bending 
mode (r=3) are calculated and m = 2, 1= 2. 

3. Discrete Time VSS Disturbance Observer Design 

To compensate the mismatched disturbance directly, a 
disturbance estimation should be utilized to produce a signal 
of the disturbance. The discrete time VSS observer will be 
described in this section to estimate the system state vector 
and the mismatched disturbance simultaneously. The state 
equation of this disturbance can be expressed in 

w = Aww, d = Lw (10) 

where 

L=[l 0] 

and WI = a sinmot is the imbalance with frequency mo, d 

is the output. Combining Eq.(lO) with Eq.(9). The 
augmented state equation can be written as 

Xd = Adxd +Bdu+Dd 

Yd = Cdxd 

T]T [A W ,Ad = r 

°2x8 

Cd=[Cr 02x2 ], Dd=[Dr / 0lx2f 

(lla) 

(lIb) 

By assuming that the u is the output of a zero-order holder, 
the equivalent discrete-time system ofEq.(ll) is as follows 

xd(k + 1) = (J)dxd(k) +rdlu(k) + r d2 (k) (12a) 

Yd(k) = CdXd(k) (12b) 
Here we assume the following matching condition is 
guaranteed by the uncertainties r d2 

r d2 (k) = r dlh (k) (13) 

where h(k) is assumed to be bounded 

Ilh (k)11 ~ 17, 17> ° 
The objective is to design a VSS observer that would 
estimate the system state vector xr (k) and imbalance force 

WI (k) . If selecting the error of state as 

Xd (k) = Xd (k) - xd (k), the robust VSS observer can be 

described by following equation 
xd (k + 1) = (J)Oxd (k) +GoY d (k) + M(Yd (k» + r dlu(k) (14) 

where 

Me (k» r FIYd(k) A [A T ATJT 
Yd =- dlllF]Yd(k)ll+yP'Xd = Xr W 

Yd(k) = Yd(k) - Yd(k) = Yd(k) - CdXd(k) 

here parameter p and y > ° are positive numbers. 

4. Design o( Diserete Time Sliding Mode Controller 

This section will discuss· the design of digital sliding 
mode controller using the state vector and disturbance 
estimated in above section. To have a zero steady state error 
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for this system, the conventional reduced system ofEq.(9) is 
augmented by the integral variables as follows: 

i =r -x (15) 

where 

[ ]T A [A A]T r = rs rll x = Xs Xli 

and r is the reference input vector at actuator positions. The 
extended state equation can be given by 

Xi = Ai Xi + Bi U + Di +Or 

where 

xi=[x/ zTrz=[Z5 zlIYr=h rllt 

(16a) 

(16b) 

A. = [ Ar 08X2] B. = [ Br ] D. = [ Dr ] G = [08X2] 
I -E2 02x2 ' I 02X2' I 02xl' 12x2 

E2 = [(FT\}'hx6 02X2], Ci = [Cr 02 X2] 

Similarly with Eq.(9), the disturbances Di in Eq.(16) can 

be divided into 

(17) 

which shows that Di2 satisfies the matching condition and 

Dil does not guarantee the matching condition. d is 
estimated by VSS observer designed in Eq.(14). According 
to Eq.(16) and Eq.(17) the equivalent discrete-time system 
is given by 

Xi (k + 1) = (J)Xi (k) + rlu(k) + r2r(k) + r3d(k) + 3 2 (k) 

y(k)=C;Xi(k) (18) 

where 
I'> 

(J) = eAjl'>, r l = f eA(r Bi dr , 

o 
I'> 

r3 = f e Aj ' Dil «k + l)~ - r)dr 
o 

u(t) = u(kA) = u(k) , k~ ~ t ~ (k + l)~ 
and the following matching condition is guaranteed by 

disturbance Di2 . 

(19) 

For compensating the mismatched disturbance, the 
whole control input can be divided into following two parts 

u(k)=ul (k)+u2(k) (20) 

where ul (k) is the sliding mode controller part which will 

designed later. u2 (k) is used to cancel the mismatched 

disturbance by following equation 

r l u2 +r3d(k)=0 (21) 

the solution of the compensation control become 
-I A 

u2 = -rl r3d(k) (22) 
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where r I- I is the pseudoinverse of r 1 • In the result, Eq.(18a) 

may be rewritten as 
Xi (k + 1) == <Dxi (k) + r I (u I (k) + h(k)) + r2r(k) (23) 

401 Design of switching manifolds 
For discrete sliding mode system the design 

procedure is divided into two steps. The first step is to select 
the sliding manifold which is defined by 

CJ(k) == SXi(k) (24) 

After the system state is driven into the sliding manifolds at 
the time of kill, the following condition is guaranteed 

CJ(k) == CJ(k + 1) for k > kI (25) 

Using Eq.(23), Eq(24) and Eq(25), the equivalent control in 
the sliding mode can be given by 

ueq (k) == -(STI ) -I [S(<D -1)Xi (k) + STzr(k)] - h(k) (26) 

Substituting Eq.(26) into Eq.(23), we have the following 
equivalent control system 

Xi (k + 1) == [<D - r l (STI )-1 S(<D -1)]Xi (k) 

+[1 - (STI)-I S]rzr(k) 

CJ(k) = SXi (k) = SX; (k + 1) 

(27a) 

(27b) 

Next, switching matrix S must be determined so that 
the eigenvalues of Eq.(27a) lie within the unit circle. For 
discrete time system the switching matrix S can be given by 

ST == (Rz + rt prl ) -] rt P<D & (28) 

here P is the solution of the algebraic matrix Riccati 
equation 

. P - <D~P<D& + <Dtprl (Rz + rtprl)-I r / p <D& - Qz = 0 

and 
Qz :2: 0, Rz > 0, <D & == <D + Ei ,with £:2: 0 

where £ is a positive number, 1 is the identity matrix. 

4.2 Design of controller 
A new type of sliding mode controller considered here 

is directly defined by a desired deriyative of discrete 
Lyapunov function. We assume 

V(k) == O· 5CJ(k) 2 (29) 

as a candidate Lyapunov function. One can find that if the 
difference of the Lyapunov function of Eq.(29) is 

V(k + 1) < V(k) (30) 

the ensure stability condition for discrete time sliding mode 
can be satisfied. Defining the incremental change of 
surface CJ(k) as 

dCJ(k + 1) == CJ(k + 1) - CJ(k) (31) 

~.(k)~,(k) ilk) 
~ 

u(k) 

x4 (k),x 12 (k) 

2 Block diagram of sliding mode control system 

A solution for Eq.(30) can be find as 
dCJ(k + 1) == -IlGI CJ(k) == -JCJ(k) (32) 

where 
GI ==diag[gl,",gm],gj >O,(i==l,· .. ,m) 

J == diag[ Ilg I , ... , Ilg m] 

==diag[i], "', im], O<jj <l,(i==l,· .. ,m) 

and Il is the sampling period. Using Eq.(19),(23) and 
Eq.(24), the left hand part ofEq.(32) can be expressed as 
dCJ(k + 1) = SX j (k + 1) - SXj (k) 

== S<Dxi (k) + STI u(k) + ST dZ (k) + ST2r(k) - SXj (k) (33) 

Comparing Eq.(33) with Eq.(32) gives 

-J CJ(k) == S<Dxj (k) + ST] u(k) 

+ST d2 (k) + ST2r(k) - SXj (k) (34) 

With Eq.(13) and Eq.(34), we can obtain the control law 

ul (k) = -(ST] )-1 [S(<D -1)xj (k) + ST2r(k)] 

-h(k) - (ST]) JSxj (k) (35) 

Comparing Eq.(35) with Eq.(26) one can find 

UI (k) == ueq (k) - (STI )-1 JSxj (k) (36) 

Figure 2 shows the total block diagram of the proposed 
sliding mode control system based on a VSS observer. 

5. Simulations 

The sampling time of discrete time sliding mode 
controller was Il == 100 f.1S. The coefficient r is selected to 

be 0.001 and E is 10. For simplicity, the value of control 
gain matrix J is selected as i, = 0.8, (i == 1, "', m) . 

Simulations were performed for the control system designed 
with the rigid modes and the first bending mode. 

In servo control simulation, the position command of 
flexible rotor to lift off is defined to be 0.12mm. The 
simulation results of the step reference responses proposed 

by discrete time SMC at positions Xs (solid line) and 

Xll (dashed line) are shown in Fig.3. It shows that the rotor 

can track the position command with good stability and no 
overshoot in the case of the flexible modes. It has been made 
clear that the robust stability to spillover caused by the 
truncation of higher modes is sufficiently guaranteed by 
sliding mode control. The step reference responses, using 
linear PID compensator under the same condition, is shown 
in Fig.4. Comparing this result with that of Fig.3, we can 
find the responses of pm have a big overshoot. The above 
results show the proposed discrete time sliding mode 
controller has superior tracking performance without any 
chattering problems. 

Under the mismatched load disturbance caused by an 
imbalance acting on position x], Fig. 5 shows the time 

history displacement responses of position xs. The 

disturbance frequency OJ 0 is 400 Hz and the disturbance 

amplitude a= 1 (N). In this figure, the solid line indicates the 
response of system with the disturbance compensation 
control design and dashed line shows the system response 
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Figure 5 Time history responses with imbalance 
disturbance in case ofVSS observer «(lJo = 400Hz) 
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Figure 6 Time history responses with imbalance 
disturbance in case of linear observer «(lJo = 400Hz) 

without the disturbance compensation control design. It is 
clear that the displacement of position x5 can be made 

nearly zero amplitude by means of the disturbance 
compensation control. Fig. 6 shows the time history 
displacement responses of position x5 using a linear 

observer. Comparingthe results of Fig.6 with that of Fig.5, 
we can find that the VSS observer has superior control 
performance for mismatched disturbance in sliding mode 
control system. 
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Figure 7 System response for impulse disturbance 
using sliding mode controller 
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Figure 8 System response for impulse disturbance 
using conventional linear compensator 
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Figure 9 System response for impulse disturbance 
after parameter variation with SMC 

6. Experiments 

The experiments for the actual grinding MB spindle 
are carried out with discrete time sliding mode controller 
and conventional linear compensator. Two displacement 
signals measured by two sensors in the radial direction are 
sent into DSP(TMS320C40) through AJD converter and two 
control inputs given by DSP are supplied to two 
electromagnets through DI A converter and power amplifiers. 
The sampling time in experiments is set at O.lms(sampling 
frequency 10KHz) and other controller parameters are the 
same as those used in simulations. 

Considering the effect of disturbance, Figure 7 shows 
the impulse disturbance responses of this system at positions 
X5 after lift off with sliding mode control. The same 

impulse disturbance responses, using linear PID 
compensator under the same condition, is shown in Fig.8. 
Comparing Fig.7 and Fig.8, one can find that the result of 
discrete time sliding mode controller indicates excellent 
performance and damped quickly. Furthermore, Fig.9 gives 
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Figure 10 Orbit plot of shaft center at 100,000 rpm 
using sliding mode controller 
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Figurell Orbit plot of shaft center at 100,000 rpm 
. using conventional linear compensator 

the impulse disturbance response of discrete time sliding 
mode controller after the mass of rotor is decreased by 20% 
of the nominal value_ It shows that sliding mode controller 
has strong robustness by comparing this result with the 
result offig_7 . 

Next, we shall indicate the results of the rotating test 
with this spindle. Figure 10 gives the orbit plot of the shaft 
center when the shaft is rotated up to100,000 rpm. The 
result ofPID is shown in Fig. 11 . We can find that the shaft 
vibration amplitudes under discrete time sliding mode 
controller is smaller than that of conventional linear 
compensator at this speed. 

7. Conclusions 

This paper presents a new control method for the 
flexible rotor-magnetic bearing systems. The plant 
dynamics, including the actuator dynamics and the flexible 
rotor dynamics, were described. A new discrete time VSS 
disturbance observer were proposed. A discrete time sliding 
mode controller, using a reduced-order model of the plant, 
was designed for active control of this magnetic bearing 
system. By carrying out the comparative simulation and 
experiment studies, the following results were obtained: 

(1) The proposed discrete time sliding mode controller is 
computationally effective and easy to implement. The 

resulting control signals are smooth, unlike the 
conventional sliding mode controllers, so that the possibility 
of exciting high order unmodelled dynamics is eliminated. 

(2) By using the proposed control method, the unstable 
modes can be controlled with very strong stability and the 
prescribed tracking performance without overshoot is also 
obtained comparing with the linear PID controller . 

(3) By means of studied control scheme, the effect of the 
parameter variations and disturbances in this system, which 
satisfY the matching condition, can be nullified to obtain 
robust performance. 

(4) With the designed discrete time VSS disturbance 
observer, the non-matched imbalance disturbance can be 
canceled or reduced. 

(5) With the discrete time sliding mode controller, the 
spindle was successfully performed up to 100,000 rpm 
without unstable vibration and have smaller vibration 
amplitude comparing with conventional linear compensator. 
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