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Abstract 

In this paper the application of neural networks to the control of magnetic bearings for a low speed rotor system is examined. 
The application of the neural network control method to a magnetic bearing system with self-excited and forced disturbances is 
reviewed. In modelling the system, the shaft is first discretized into eighteen finite elements and then four levels of 
condensation are applied. This leads to a system with six masses and six compliant elements which can be described by twelve 
state variable. A PD controller was designed first and then used to train the neural network controller. The trained neural 
network controllers show better results than the original PD controller after three training sessions. For the neural network 
control scheme discussed, two-layers neural networks have been used in the simulation work. The reinforcement, error­
propagation, and temporal-difference methods have been used in the neural network controller. The simulation results show 
low sensitivity to external periodic disturbances can be achieved for speeds up to 2500 rpm using the proposed neural network 
controller. 

1. Introduction 

Magnetic bearing systems are inherently unstable when the 
shaft and rotor turn at speeds above the first critical speed. In 
this case the shaft bends from the axis of rotation when either 
transient or external periodic disturbances are applied. In 
such systems with a long slender shaft both self-excited and 
forced instabilities can often lead to severe rotor vibrations. 
The usual control task for these systems is to ensure that these 
vibrations are minimised rapidly and the location of the rotor 
is controlled accurately. This problem has been studied using 

Hoo, root locus, PID, and LQR, methods. In addition the 
neural network methods have been studied, and it has been 
shown that good stability can be achieved when transient 
disturbances are applied [1, 2]. However when external 
periodic disturbances are applied to the magnetic bearing 
system the above approaches have proven to give poor 
robustness. 

In this paper we study the operation of a rotor supported on 
two magnetic bearings. The rotor is assumed to be operating 
at speeds up to and above the first critical speed, but below 
speeds where gyroscopic effects are significant. Four classes 
of neural network control have been identified, depending 
upon how the controller interacts with each bearing and its 
axes. In this paper we examine the case where each plane of 
the bearing system has its own neural network controller, and 
study the effect of external periodic disturbances on the 
system operation using computer simulation. 

The computer simulation of the control system uses two-layer 
artificial neural networks. In this scheme one neural network 
is the evaluation network while the other is the action 
network The three algorithmic methods of error back-

propagation, temporal difference, and reinforcement learning 
are used for the neural network controller. The software 
package MATLAB is used for carrying out the simulation of 
the neural network control system. 

The operation of the magnetic bearing system with external 
periodic disturbances is also studied by using computer 
simulation. Disturbances in terms of different initial 
displacements and external periodic disturbance inputs are 
imposed. The training sessions are used for testing the 
algorithms. Simulation shows that initially many iteration are 
required for the controller to converge. The effect of rotor 
speed changes on the neural network controller operation is 
investigated. Simulation investigation of the system stability 
and robustness is carried out for various types of applied 
disturbances. 

2. Model of the Magnetic Bearing System 

Figure 1. The rotor system general arrangement. 

The magnetic bearing suspension system being considered has 
a flexible shaft as shown in Fig. 1. The shaft is supported at 
the left and right ends by two magnetic bearings M} and M2 
with the rotor being positioned on the shaft as shown in the 
above figure. The displacements of the bearing journals are 
defined to be XI> YI> X3 and Y3. In the system model, the rotor 
flywheel structure was divided into eighteen elements. The 
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finite element method was used to calculate the mass and 
stiffness of the shaft [7]. Four levels of condensation were 
applied to the eighteen finite elements. This leads to a 
mathematical model of the shaft having twelve state variables 

In this system the bearing forces are generated by electro­
magnet coils and the shaft position is detected by a 
displacement sensor. The sensor signals are fed through the 
controllers to the power amplifiers which finally supply the 
excitation currents to the electro-magnet coils. 

2.1 Model of the Shaft 

The finite element method was used to calculate the mass 
matrix Ms and stiffness matrix Ks of the shaft. From Fig. 1 
these matrices were calculated to be 

MS1 = 

1 0.7743 - 0.2619 0.0651 
i -0.2619 1.74l3 -0.2186 
I 0.0651 -0.2186 0.7835 
I 0 0 0 

l 0 0 0 
0 0 0 

I 45.792 -79.524 38.039 
I -79.524 157.69 -76.209 
I 38.039 -76.209 46.656 
I 0 0 0 

l 0 0 0 
_ 0 0 0 

o 0 0 l 
o 0 0 I 
o 0 0 I 

0.7743 -0.2619 0.0651 I 
-0.2619 1.7413 -0.2186J 
0.0651 - 0.21 86 0.7835 

o 0 0 l 
o 0 0 I 
o 0 0 I 

45.792 -79.524 38.039 I 
-79.524 157.69 -76.209 J 
38.039 -76.209 46.656 

2.2 Model of the Magnetic Force 

The magnetic force can be modelled as a nonlinear function of 
the journal displacements and the control currents. In this 
model, the journal displacements have four directions X l, X3, 

Yl, and Y3 as shown in Fig. 1 and the control currents are 
defined as i" i3, i2, and i4. A pair of general variables (x, i) are 
used for modelling of the magnetic force, (x, i)E{(X" i1 ),(x3, 
i3)'(y" i2)'(y3' i4)}' The force has been shown by Krodkiewski 
and Zmood [7] to be 

(2-1) 

In Eq. (2-1), the coefficient can be written as 

( ) 1 sma 
CPl x = l-(x/cy l+(x/ c)cosa 

2x / c 

and 

arctan( ~ x / c tan( a /2)J 
~l+ x / c 

( ) -1 sma 
cp 2 X = 1 _ ( x / c r 1 - ( x / c) cos a 

2x / c 
·-----::-:::-x 
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fix, i) 
k 

F 
n 
c 

x 

( l+ x/ c ( )J arctan tan a / 2 
1- x / c 

is the magnetic force [N] 
is the bearing actuator force coefficient 
(1.49><1O-W/(A-tP)· 
is the permanent magnet air-gap MMF (F=299 A-t). 
is the control winding turns (n = 140 turns). 
is the stator-rotor air-gap (c = 0. 15 mm). 
is the displacement of the shaft (-0.15 mm :5 x :5 0.15 
mm). 
is the control current (-2 A :5 i :5 2 A). 
is the pole face angle ( ex. = 45 degree). 

From above equations, the magnetic force can be plotted as 
shown in Figs. 2 and 3. 
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Figure 2. The nonlinear magnetic force. 
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Figure 3. Three dimensional plot of nonlinear magnetic force. 



2.3 The Model of the Magnetic Bearing System 

The equations of motion used in the simulation of the 
magnetic bearing system are given in Appendix 1. The 
magnetic bearing system is modelled using the continuous­
time state-space model 

{
X = Ax+B(f(x,i)+Fd ) 

y= ex 
The coefficient matrices for A and Bare 

4=:[ °6x6 16X6 ] B=[06X6] 
- M -1 (K) 0 M -1 

s s 6x6 s 

Expanding Eq. (2-2) into a discrete-time equation gives 

x(k + 1) = AgxCk) + B g (f(x, i) + Fd ) 

y(k) = Cx(k) 

(2-2) 

(2-3) 

In this expansion the sample time has been taken as 0.001 
seconds. 

3. Architecture and Learning Algorithms of Neural 
Ne ... .,rk 

In this magnetic bearing system, there are four displacements 
Xj, X3, YJ, and Y3 having to be controlled by the neural networ . 
controller as shown in Fig. 1. Four classes of neural network 
control have been identified, depending upon how the 
controller interacts with each bearing and its axes. In this 
paper each plane of the bearing system has its own nel1r2il 
network controller. In the present work, the learning system 
is based on the "">fork by Anderson [3] The J !arning system 
utilizes the temporal difference (TD) method [5], the 
reinforcement learning method [4], and the connections error 
back-propagation algorithm. The block diagranl of the neural 
network control system is shown in Fig. 4. This system 
contains two controller subsystems; the e being the 
e1Joluation and action networks. The action network 
functions as a controller where its output is used as an input 
for controlling the magnetic bearing system operation. The 
evaluation network subsystem is a learning neural network 
where the evaluation functions are adaptively adjusted during 
the control system learning phase when both subsystems are 
simultaneously modified. 

During operation a primary objective of the neural network 
control system is to avoid system 'failure'. This concept can 
be formalised in terms of the failure signal, which provides 
infonnation to the evaluation network regarding control 
system performance during the learning phase. For example 
this failure signal is given by 

r(t) = ' {
-I 

0, 

iflx11> O.Olmm 

otherwise 
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for the XI axis neural network controller. In the evaluation 
network of the output layer, the temporal-difference CTD) 
method has been used to predict system future behaviour, and 
thereby provides a solution to the temporal credit-assignment 
problem. 

Learning 
action 

Figure 4. Neural network control system. 

Indeed, learning to predict is one of the most basic and 
prevalent tasks in learning. For the action network of the 
output layer, the supervised learning method cannot be used, 
because the correcting action is not known. Here learning 
must be based on the inaccurate, time-varying, and delayed 
evaluations of the adaptive evaluation function. The 
numerical approach to learning with such performance 
feedback is called reinforcement learning This is the on-line 
learning of an input-output mapping through a process of trial 
and error designed to maximise a scalar performance index 
called a reinforcement signal r j . If the value of rj is positive, 
the probability of an action is increased in the output layer of 
the action network while if the value of rj is negative, the 
probability of an action is decreased. In this paper the 
weights in the neural networks are updated at each time step 
in the manner described in A PD controller for training 
the neural network controller is given in Appendix 2. 

.' 1imuiatioJ ~ 

In this section we e: line the operation of a magnetic bearing 
system using neural network controllers where the rotor is 
subjected to external periodic disturbances. In the 
simulations a number of cases of periodic disturbances using 
unbalance eccentricities as shown in Table 1 are examined. 
At the start of the fIrst training session of the neural network 
controllers, the magnetic bearing system controller was 
initialised by assigning random values to all of the connection 
weighting coefficients These random values were taken in 
the range (-03, 0.3) During each training session, the 
weights were adjusted according to the learning rules given in 
[6]. The simulations have shown that in the first training 
session 400 iterations were required before the controller 
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converged. However by the third training session the number 
of iterations required to achieved satisfactory convergence had 
reduced to thirty In Figs. 6 to 10 we show the results of the 
third training session for external periodic disturbances with 
different initial conditions. 

Fig. 6 shows the simulated results for different initial 
conditions and rotor speed CD = 0 for Test Condition 2 only, 
as the results for the remaining cases are similar. It can be 
seen that the shaft returns to its steady state position in 
approximately 0.03 seconds. 

Fig. 5 shows the simulation result for a PD controller and 
rotor speed CI) = 100 for Test Condition 1. It can be seen that 
the shaft begins to rotate about its principal inertial axis with 
a magnitude of 0.05 mm. But with neural network control, for 
Test Condition 3, where CI) = 100 rad/sec, the rotor returns to 
its steady state position in about 0.15 seconds as shown in 
Fig. 7. For Test Conditions 4 and 5, where CD = 150 rad/sec 
and CI) = 200 rad/sec, the shaft begins to rotate about its 
principal inertial axis with a magnitude of 0.01 mm as shown 
in Figs. 8 and 9, respectively. For Test Conditions 6, where CD 

= 250 rad/sec, the rotor begins to rotate about its principal 
inertial axis with a magnitude of 0.02 mm as shown in Fig. 
10. 

However as was observed above, when CI) is greater than 150 
rad/sec the shaft begins to rotate about its principal inertial 
axis with a magnitude of 0.03 mm when unbalanced mass m = 

0.01 kg and the eccentricity of the unbalance mass ;.t = 70 Jlm 
and when CD is greater than 250 rad/sec the shaft begins to 
rotate about its principal inertial axis with a magnitude of 
0.05 mm when the unbalance mass m = 0.005 kg and the 
eccentricity of the unbalance mass I-L = 60 JlID. From the 
above simulation results it can be seen that good stability and 
system robustness can be achieved with various types of 
disturbances when the proposed neural network controller is 
used. 

X 10" 
~10r---~------..., 

l~~rvvw 
.s. 
'i.l 
- 5 f' 

io~JWWV 
o 0.2 0.4 

time (sec.) 

~ ~ 
E E 

·5 '-'----~------' 
o 0.2 0.4 

lime (sec.) 
x 10" 
lr---~---..., 

~ 9 
~ ·0.5 15. -0.5 
W m 
'5 .1 '--___ ~ ___ __' '0 .1 '-___ ~ ____ __' 

o 0.2 0.4 0 
time (sec.) 

0.2 
time (sec.) 

0.4 

Fig. 5. System response for dIfferent 1TI1hal condlhons WIth 
Test Condition 1. 

~ :in'" 
I 0'1\1\r~~ 
~·1 I ~ 
c­
oo 
u_2~ ________ ~ __ ~ 

o 0.1 

x 10" 
time (sec.) 

~ 2,---------..., 
.s. 
>. 1 I 
- I! 
iii 0 i II f\.....-..-.---
~ Ilv 
"*- ~1 V 
'" u_2~ ____________ ~ 

o 0.1 
time (sec.) 

X 10" 

g 1~-------~---, 

'" )( 0 

~ 
E 
~ ~1 
0. 

"' U~~I ________ ~_~ 

o 0.1 
lime (sec.) 

[~l 
o 0.1 

time (sec.) 

Fig. 6. System response for Test Condition 2 to external 
periodic disturbances. 
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Fig. 7. System response for Test Condition 3 to external 
periodic disturbances. 
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Table I 

Test Unbalanced Mass m (kg) co (rad/sec) 
Conditions Attached To The Rotor Initial Conditions In All Tests (mm) and J..l. CJ..tm) 

1 0.01 xJ=0.06, YJ=0.06, x3=-0.06, Y3=-0.06 100, 70 
2 0.05 x J=O. l , YJ=O. l , x3=-0 .1 , Y3=-0.1 0, 70 
3 0.01 x J=0.06, YJ=0.06, x3=-0.06, Y3=-0 .06 100, 70 
4 0.01 xJ=0.06, YJ =0.06, x3=-0.06, Y3=-0.06 150, 70 
5 0. 005 x J=-0. 12, YJ=-0. 12, x3=-0.1 2, Y3=-0. 12 200, 70 
6 0.005 
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Fig. 9. System response for Test Condition 5 to external 
periodic disturbances. 
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Fig. 10. System response for Test Condition 6 to external 
periodic disturbances. 

5. Conclusions 

xJ=0.06, YI=0. 06, x3=-0.12, Y3=-0 .12 250, 60 

disturbances it can be seen that it has good robustness when 
operating at speeds up to 250 md/sec. 
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Appendix 1 

The equations of motion for a magnetic bearing system can be 
shown to be 

[M ]{x}+[K ]{x}=[f(x,i)]+[FdJ s s 

In the above equation the displacement vector x is defined to 

be x = [x!,X2,X3'Y!' Y2 'Y3l J(x,i) is the magnetic bearing 
force in Newtons. The power amplifier output current 
i= [iI>0,i3,0,i4; 0,i6]. Fd is the external periodic disturbance 
force produced by an unbalance mass m attached to the rotor 
so that Fd = [O, maJ2,lJ, O,O,O,O,O,O]'coswt + [O,O,O,O,O,molp 
,0,0] 'sinwt. In the expression for Fd the rotor angular velocity 
is denoted by Ul while J..l. is the eccentricity of the unbalance 
mass. 

Appendix 2 

The equation of a PD controller was designed as . 

i = - 200x - 2x 

A neural network control technique has been successfully where 
tested for the control of a magnetic bearing suspension system 
subjected to external periodic disturbances. Both the system 
modelling and some simulation results have been presented in 

i is the controller current, (i =i j, i 3, i4, i6) . 
X is the displacements of the shaft, (x J, X3, YJ, yJ. 
x is the velocities of the shaft, (x= x!, x 3'Y!'Y3 ). 

this paper. In the case where the system has external periodic 
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