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Abstract 

Ultra high speed rotation in Active Magnetic Bearing 
(AMB) systems with their comlex structure requires 
powerful control system design approaches for robust 
stability and robust performance. Recent studies in 
robust control theory have offered comprehensive gain
scheduled control design approaches such as Linear Ma
trix Inequality (LMI) based gain-scheduled control for 
Linear Parameter Varying Systems (LPVS) which are a 
certain class of linear time-varying systems that state
space matrices of their plants are fixed function of time
varying physical parameters. Rotor systems modelled 
with inclusion of gyroscopic effect can be considered LPV 
system because of affine dependence of system natural 
frequencies to rotational speed which is taken as time
varying parameter. These varying parameter values can 
be measured on line during control operation. In this 
study, commercially available and vertically designed a 
rotor bearing system is modelled and controlled using 
LMI based gain-scheduled controllers and compared with 
PID controllers. The results are reasonable and encour
aging for future studies of AMB systems. 

1 Introduction 

Control system design for AMB systems is still one of the 
advanced and challenging topics for control engineers be
cause of precise design requirements of their control sys
tem. The trends in AMB control system design is to use 
effective robust controller design approaches such as J..t 

control, Hoo control and other robust control approaches 
[1], [2], [3]. One of the recent topics in control related 
fields is linear matrix inequality (LMI) based control sys
tem design because of some good advantages. As an 
accepted reality, control system design using Lyapunov 
function establishes global asymptotic stability for con
trol systems and LMI based gain-scheduled control de
sign can be included this class of control design. 
In the modelling stage of rotor bearing systems, gyro
scopic effect is generally neglected for the aim of simplic
ity and this simplification may not be effect design very 
much in some cases. On the other hand, designing of cer
tain kind of rotor bearing system requires the inclusion 
of gyroscopic effect for efficient control. For overhung ro
tors, the gyroscopic couple has a considerable influence 

on the dynamic behavior of the rotor. In the case of 
very high operating speeds of rotors, this kind of effect 
can not be neglected anymore. 
There are not so many controller design studies in terms 
of gain scheduling technique for AMB systems in liter
ature. In the study [4], gain scheduled Hoo controllers 
are designed for eliminating unbalance vibration in AMB 
systems. The gain scheduling parameter of the study [4] 
is free parameter of Q parametrization theory and the 
resulting controller is also robust Linear Time Invariant 
(LTI) controller. 
Linear Parameter Varying (LPV) plant definition plays 
a central role designing of gain scheduling control. LPV 
plants are described by state space equations of the form 

x = A(O(t))x + B(O(t))u 
y = C(O(t))x + D(O(t))u (1) 

where x, y and u denote state vector, measured output 
vector and control input, respectively. 0 is a vector of 
time varying plant parameters and plant matrices are 
fixed functions of the e. In practice, e can be the time 
varying physical parameters such as velocity, damping, 
stifness and etc., and be given by 

(2) 

The time varying parameter 0 belongs to a parameter 
polytope e and varies with vertices ell e2 , • •• ,Or of this 
polytope 

If the measurements of 0 (t) are available in real time dur
ing control operation, the designed controllers have the 
same parameter dependence as the plant. The controller 
form is: 

Xk = Ak(O(t))x + Bk(O(t))y 
u = Ck(O(t))x + Dk(O(t))y ( 4) 

where y is the measurement vector and u is the control 
input. With the parameter measurements, this controller 
has a continues adjustment to the variations in the plant 
dynamics and maintains stability and good perfermance. 
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2 LMI Based Gain-Scheduled 
Control Formulation 

LMI based gain-scheduled Hoo control formulation given 
here is aimed for practial use. The theoretical formula
tion with proofs can be found in [5], [6] extensively. 
Consider state-space representation of the plant given by 

(5) 

where x is the state vector. z and y denote the controlled 
output and the measured output vectors, respectively. u 
is the control input and w is the disturturbance input 
vector. Given any proper real rational controller such 
that 

(6) 

The closed-loop system can be obtained by 

(7) 

Closed loop matrices Aez, Bel, Cel, Del are: 

] [ Ao + BnC Bo + BfW2l 
Co + D 2lnC Dll + D 12 nD21 

(8) 

where 

A 0 Bl 0 B2 
0 0 0 h 0 

Cl 0 Dll 0 D12 
0 Ik 0 Ak Bk 

C2 0 D21 C k Dk 

Note that controller matrices are collected into a single 
matrix n. 
The Lyapunov function V(x) = xT Px, P > 0 establishes 
global asymptotic stability for the closed-loop system 
(7). The L2-induced norm from w to z for LTI system is 
bounded 

(10) 

Finally, there exists a positive definite Lyapunov function 
V(x) = xT Px, P > 0 that satisfies 

~V(x) + zT z -lwT w < 0 
dt 

(11) 

The Hoc> suboptimal control problem is equivalent to the 
existence of a solution to the following inequality for 
Xc! > 0 

GEl D~ <0 
-iI 

(12) 

Solution of the LMI (12) requires to find two symmetric 
matrices Rand S such that 

(13) 

(14) 

[ R I] > 0 
1 S - (15) 

where N Rand Ns denote bases of the null spaces of 
(Bi, DI;) and (C2 , D12 ), respectively. 
The above Hoo control problem is valid only for LTI sys
tem and can be extended for LPV systems. 
Let's consider state-space representation of LPV plant 

e is a vector of time varying system parameters and plant 
matrices A(.), Bl (.), C1 (.) and Dll (-) are fixed functions 
of the e. B 2 , C2 , D 12 , DZI matrices are independent of 
the parameter e because of tractabilty reasons. Finally, 
the solution of Hoo control problem for LPV system has 
the same form of LTI sytems as follows: 

RCr; 
-iI 
D'fIi 

[ R I] > 0 
I S -

(17) 

(18) 

(19) 

where Ai, Bli, Cli, and D lli denote the parameter values 
of A( e), B1 (e), C1 (e) and Dll (e) at the vertices e = ei 

of the parameter polytope. 
The solution of inequalities (17), (18),and (19) is possible 
using advanced softwares such as convex optimization 
alghorithms. The construction of the controller matrix 
n from Rand S matrices can be done by the same convex 
programs. 

3 Mode]ing of Rotor Bearing 
System 

The schematic drawing of magnetic bearing system for 
commercial use is given in Fig.l. The plant has a be
low side permenant magnetic bearing which has constant 
stiffness and damping effect and an upper side active 
magneting bearing which produces control inputs. Nat
ural frequencies of the system are changing with rota
tional frequency as shown in Fig.2. This system is also 
under the unbalance disturbance effect of translational 
motions in x and y direction. Actual operational ~lpeC'd 
is 48000 rpm. The critical speed of rotor at rigid modes 
is about 5000 rpm and the first bending mode is at least 
twenty times higher than the rigid modes. 



The equations of motion of physical system given in Fig. 1 
can be written by 

mXg + cXg + kXg = fxu + mun£w;Coswt 

m Yg + cYg + kYg = fyu + mun£w;Sinwt 
.. 2 . . 2 

Jrey + clbey - Jawzex + ktbey = Lufxu 
.. 2 · . 2 

Jrex + clbex + Jawzey + ktbex = -Lufyu (20) 

where W z is rotational speed. The AMB system parame
ters are given in Table 1. The control forces produced by 
upper side active magnetic bearing in x and y directions 
can be expressed by 

[ fxu ] [ 2~dU 0 2LuKdu 0 ] fyu 2Kdu 0 - 2LuK du 

[ :: 1 [2Kd• 
0 ] [ !:: ] (21) X ey + 0 2Kdu 

ex 

Finally, the control system state space representation can 
be given by 

Xs = A(e(t))xs + Bl (e(t))w + B 2 u 

Y = CXs (22) 

where xsand yare the state vector and the measured 
output vector, respectively. u is the control input and w 
is the unbalance disturbance input. The output is: 

Xg 
Xg 
Yg 

[ ~: ] [ 1 0 0 0 tu 0 0 ~ ] Yg 
(23) 

0 0 1 0 0 0 -tu ~y 
ey 
ex 
ex 

where Xu and Yu denote the displacement of the rotor at 

Fig.2 Natural frequencies of the system 

Table 1. Parameters of AMB system 
Parameter Symbol Value 
Mass of the rotor m 1.595 
Moment of inertia Jr 0.00398 
Polar moment of inertia Ja 0.00174 
Distance to C.G. Lu 0.0128 
Distance to C.G. tu 0.0314 
Distance of sensor to C.G tb 0.0843 
Upper side AMB parameter Kiu 200 
Upper side AMB parameter Kdu 3 x 105 

Stiffness coefficient k 60000 
Damping coefficient c 28.08 
Unbalance mass mun 0.0007 
Distance to mun £ 0.02 
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Unit 
kg 
kgm2 

kgm2 

m 
m 
m 
N/A 
N/m 
N/m 
kg/s 
kg 
m 

4 Gain Scheduled Hoo Controller 
Design 

Gain-scheduled control design structure of AMB system 
is given in Fig.3. The desired performance specifica
tions on control system is defined in terms of frequency 
shaping filters WI and W2 • The frequency character
istics of filters is shown in Fig.4. The control system 
speeds up from 0 to 48000 rpm in 3 minutes and unbal
ance force changes with the square function of rotational 
speed (Fig.5). To include the unbalance as a varying 
disturbance input, the variation of unbalance force is lin
earized as shown in Fig.5(b). Parameter dependence of 
our system can be given by 

W z E [0, 27r800j rad/ sec (24) 

Specifically for this problem, the parameter vector e (t) 
IS: 

2 

the upper side sensor location. e( t) = al W Zmi n + a2 W z max ' L:ai=l a~O (25) 

Fig.1 Vertical AMB system 

i=1 

Augmented plant can be given by: 

[ 
A(e) B1(e) B2] 

G(e) = C1 Dll D 1Z 

Cz DZI D22 
(26) 

At the corner values of e, the plant matrix is: 

Finally, using the parameter dependent augmented 
plant , the gain-scheduled controller is computed. The 
structure of this controller is given by 
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The simulation of above gain scheduled controller can 
be done for a frozen value of B. Actually, the controller 
is an LTI controller at each value of parameter B. Im
plementation of this controller requires the time varying 
paramet er measurement. In our control system , using 
the measurement of rotational speed , the controller is 
continuously scheduled as shown in F ig.6. 

r + 

Fig.3 Control structure of the system 
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FigA Frequency shaping filters 

(a) (b) 
Fig.5 (a ) Speed up (b) Unbalance force 

F ig.6 Gain sheduled control system 

5 PID Controller 

Actual PID controller is used for simulation . For each 
direction , the same P ID controllers are operated (Fig.7). 
Parameters of this controller are given in Table 2. The 
parameters K i and Kp are Ki = 3 , Kp = 0.75. P ID 
controller has seven filters as shown in Fig.8. The filters 
51 and 56 are notch filters. T he filters 52,53 and 54 
are added for phase lead-lag action. Noise reduction is 
done by low-pass filter 55' Integral action of controller 
is realized by 57. 

\<.-;" L;;..,....:!~----::7'.c::.._-------.I 

Fig.7 Control system with PID controller 

5, 

Fig.8 P ID controller structure 

Table 2. P arameters of PID controller 

51 52 53 54 55 56 57 
a 7e3 200 2e4 3e4 8e3 2e3 0 
b 2. 1e8 2 7 7 6e7 1.25e8 0 
c 1 200 2e4 3e4 0 1 1 
d 0 0 0 
e 2.1e8 6e7 1.25e8 

6 Simulations 

Simulation result s for gain-scheduled control are ob
tained by using LMI Control Toolbox [7] in MATLAB. 
As mentioned before, control of the rot or system is done 
by upper side active magnetic bearing in x and y direc
tions. The bode plots of t he system is obtained from 
referance input Rxu to rotor displacement X u a t upper 
side sensor location and from referance input Rxu t o ro
tor displacement Xb at below side sensor location. 

6.1 Gain-scheduled Control Results 

The bode plot of closed loop system with gain-scheduled 
control is given in Fig.8 and Fig.ll for both sensor loca
t ions, respectively. The results are quite acceptable for 
closed-loop system with gain scheduled controller. On 
the other hand, gain-scheduled controller showed very 
dynamic behaviour at certain frequency as shown in 
Fig.9. Comparing the closed-loop system bode plot re
sults for both controller case, the gain-scheduled control 
case is better than PID case. However, gain-scheduled 
controller has high gain comparing with P ID controller. 
This is not big problem for realizing the gain-scheduled 
controller in DSP. 
The step response of closed-loop system from referance 
input Rxu t o Xu is given in Fig.lO. The step response 
with gain-scheduled control has no overshoot in t his case. 
For below side sensor location, Fig.12 shows the step 
response of t he closed-loop system with gain-scheduled 
control. For rotor-bearing system, unbalance time his
tory response of the closed-loop system is a good mea
sure for evaluating the controller and should obatined 
for both control case. The time history response given 
Fig.13 for gain-scheduled control case gave low ampli
tude rate compring with PID control. 
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Fig.8 Bode plot of the closed-loop system with GSC 
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Fig.9 Bode plot of the GSC at different frequency 
(a) 2D plot (b) 3D plot 
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Fig.l0 Step response of closed-loop system with GSC 
(W z = 100Hz) 
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Fig.ll Closed-loop system with GSC 
(Output is below side) 
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Fig.12 Step response of closed-loop system with GSC 
(Output is below side) 

Fig.13 Unbalance time-history response with GSC 

6.2 P ID Control R esults 

P ID controller is independent of the rotational speed 
of the rotor. For this reason, the nature of P ID con
troller given in Fig.15 is different from gain-scheduled 
controller. The bode plots of the closed-loop system with 
PID control are given in Fig.14 and Fig.17 for different 
output location. The step responses for upper and below 
side outputs are shown in Fig.16 and Fig.18, respectively. 
The time history response of the closed-loop system has 
big amplitude rate comparing with gain scheduled con
trol(Fig.19) . 

· :f ·~f·-·-. Ii:i! "" • I I I . 11 ' I I . ,, ' 
~ . . 

o ,.. . " • • . •. . 

~~ 10 ' 1~ 103 

Fr-quency (Hzl 

(a) 
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(b) 
Fig. 14 Bode plot of the closed-loop system with PID 

(a) 2D plot (b) 3D plot 

Fig.15 Bode plot of PID controller 

" 1°.8 

Fig.16 Step response of system with PID 

Clo •• d Loop Symm Ouq,utfrom Rxu toXb 

Fig.17 Closed-loop system with PID 
(Output is below side) 

C """.O IOOP s l"p responga wi th P IO Iram Rxu 10 Xb 

Fig.18 Step response of the system with PID 
(Output is below side) 

Fig.19 Unbalance time-history response with PID 

7 Conclusions 

Elimination of gyroscopic effect on a rotor magnetic 
bearing system is a difficult control task using conven
tional control techniques because of complex nature of 
rot or dynamics. Except ideal systems all real systems 
have unhomegenous structure and this cause unbalance 
forces in rotating machines even if we perfectly balance 
the rotating parts. Because of very high operational 
speed of the rotor, the elimination of unbalance effect 
is as important as elimination of gyroscopic effect. 
In this study, gyroscopic and unbalance disturbance ef
fects of vertically designed an AMB system are elimi
nated using recently available LMI based gain scheduled 
Hco control. The results obtained here are reasonable 
and encouraging for future studies on AMB systems. Our 
aim is to realize this new concept gain scheduled con
troller experimentally. The planned experimental studies 
will be carried out using obtained results soon. 

References 

[1] K Nonami, T. Ito. J1 Synthesis of Flexible Rotor 
Bearing Systems, IEEE. Trans. on Control Systems 
Technology, Special Issue on Magnetic Bearings , t o 
appear 1996. 

[2] K Nonami, S. Sivrioglu, H. Ueyama. Active Mag
netic Bearing System by Means of LMI Based Hco 
Control and Mixed Hd Hco Control, JSME Journal 
(J apaneese), to appear 1996. 

[3] K Nonami, H. Ueyama and Y.Segawa. Hco Control 
of Milling Spindle, Proceedings of 4th ISMB, 531-
536(1994), ETH Zurih. 

[4] F .Matsumura, M.Fujita, KHatake, M.Hirai, Elimi
nation of Unbalance Vibration in AMB Systems Us
ing Gain Scheduled Hco Robust Controllers, Pro
ceedings of 4th ISMB, 113-118 (1994) , ETH Zurih. 

[5] P . Apkarian, P. Gahinet , A Convex Characteri
zation of Gain Scheduled Hco Controllers, IEEE. 
Trans. on Automatic Control, 40(1995) 853-863. 

[6] P . Apkarian, P. Gahinet, Self-scheduled H= Con
trol of Linear Parameter-varying Systems: a Design 
Example, Automatica,vol.31-9, pp. 1251-1261, 1995. 
40(1995) 853-863. 

[7] P. Gahinet, A. Nemirovski, A. J . Laub , M. Chi
lali, LMI Control Toolbox, For Use with MATLAB, 
1995. 


