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Abstract: In this paper an adaptive state space 
controller for a rigid rotor suspended in active magne­
tic bearings is presented. For this sake a discrete time 
state space model is established in controller canonical 
form. Based on that model a recursive adaptation al­
gorithm is used to estimate both all system parameters 
and all states. In addition a pole placement controller 
is calculated upon the identified model. Simulation re­
sults of the closed loop system including the proposed 
algorithm show the successful operation for changes of 
system parameters, in this case the sudden appearance 
of nonconservative cross-coupling forces, as generated by 
seals, for example. 

1 Introduction 

In many active magnetic bearing applications the design 
of the entire control system is performed under the as­
sumption that all system parameters are exactly known 
in advance and do not change during operation. For this 
type of plants adaptive control is not necessary. In high 
performance turbomachinery, however, a change in sy­
stem parameters may easily occur, e.g. a sudden pres­
sure loss may lead to a change in stiffness parameters 
of a sealing and finally to destabilising nonconservative 
cross-coupling forces , for example. In this case an adap­
tive controller is absolutely necessary. In the presented 
paper a rigid rotor is investigated with respect to the 
above described problem. 

In section 2 the rotor model is shown. The rigid rotor is 
suspended by two active magnetic bearings with four de­
grees of freedom. Nonconservative cross-coupling forces 
are applied to the rotor in a given plane along the ro­
tor axis . The continuous time state space model for the 
rotor bearing system is transformed into a discrete time 
innovations model with its system matrices in canonical 
form (4). A certain prediction error algorithm which can 
be used to identify the state space model under on-line 
conditions is introduced in section 3 [1 , 2). The recursive 

algorithm, consisting of several matrix operations, can be 
performed very fast , which is important for a real-time 
implementation . Within this algorithm a state space mo­
del and all states are calculated after each sampling time 
interval. To provide numerical stability, a special imple­
mentation of this algorithm was used (5). Section 4 consi­
ders the calculation of the state space controller by pole 
placement. 

A change of the non conservative cross-coupling parame­
ters was simulated as well as the adaptation of the con­
troller . The simulation results in section 5 show, that 
the proposed identification algorithm can cope with pa­
rameter changes and the entire system can be stabilised 
even for high values of the nonconservative stiffness co­
efficients. 

2 State space rotor Illodel 

Figure 1 shows a sketch of the system under investiga­
tion. The rigid rotor is suspended by two active magnetic 
bearings at stations A' and B' . The proximity probes are 
assumed to be collocated with the bearings. 
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Fig. 1: Diagram of a rigid rotor suspended 
by two magnetic bearings and excited by non­
conservative cross-coupling forces at Station 
N'. G denotes the centre of mass. 
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This is justified for a rigid rotor model, because the dis­
placements in the bearing planes can easily be calcu­
lated from the sensor signal by simple transformation. 
The non conservative forces are expected to act within 
the plane N'. All system parameters used for numerical 
simulation are shown in Table 1. 

I Parameter Value Unit 

mr rotor mass 28.7680 kg 

fa axial mass moment of 0.8632 kgm2 

inertia 

fp polar mass moment of 0.02188 kgm2 

inertia 

a distance to bearing A 0.23877 m 

b distance to bearing B -0.24123 m 

n distance to plane N' -0.1 m 

k. AMB position stiffness 1.758.106 N/m 
ki AMB current stiffness 219.75 N/A 
k non conservative cross- 0- 10- 7 N/m 

coupling stiffness 

Ts sampling time 10 4 s 

Tab. 1: System parameters used for a rigid 
rotor suspended by two magnetic bearings 

2.1 Continuous time model 

The second order differential equation for a rigid rotor 
with it's degrees of freedom transformed into bearing 
coordinates Z = [XA' XB, YA, YBF is given by 

M z + 9 i + (N - Ks) Z = Ki u, (1) 

with the input vector u = [iXA' iXB , iyA , iyBF, respec­
tively the control currents offour active magnetic bearing 
axes. All matrices are determined by a transformation 
from inertia coordinates Zc = T Z in bearing coordinates 
Z in the form 

M TT MsT, 

9 TT 9. T, 

N TT T! Nn Tn T, 

with the mass matrix of the rotor 

C' 
0 0 0 

M, = ~ mr 0 0 
0 fa 0 
0 0 mr 

it's gyroscopic matrix 

0 0 fp 0 

), 

(2) 

(3) 

(4) 

(5) 

the geometrical transformation matrices 

(7) 

(8) 

and the matrix of the nonconservative cross-coupling co­
efficients in the plane N' 

(9) 

The linearised model of the active magnetic bearings is 
determined by the matrices 

k. I, 

kil. 

(10) 

(11) 

with 1 being the 4 x 4 identity matrix. The resulting con­
tinuous time state space model is then given in bearing 
coordinates in the form 

y 

A·x+B·u, 
C·x, 

(12) 

(13) 

with the state vector x = [z, iF and the output vector 
y = z. The system matrices are defined as follows: 

A ( -M- 1 (~s +N) 

B ( M-01K i ), 

C (10). 

2.2 Discrete time model 

-M!l 9 n ), (14) 

(15) 

. (16) 

A transformation into a discrete time system with samp­
ling time Ts yields a model with no particular structure. 
Since the discrete state space model should have a mini­
mum number of parameters to be identified, it is trans­
formed into a canonical form. With respect to the cal­
culation of an adaptive controller, a controller canonical 
form is chosen [3]. For the reason of symmetry the struc­
tural indices are l/ = [2,2,2,2], which means that there 
are four coupled second order systems. The entire model 
with system noise e (k) and measurement noise 1]( k) can 
then be written in the form 

x(k + 1) 
y(k) 

Ax(k) + B u(k) + e(k), 
C x( k) + 1]( k ). 

(17) 

(18) 

g, = ( 
0 0 

-fp 0 
0 0 

0 0 
0 0 
0 0 

) n, (6) The state vector is x, the input vector u(k) is the sam­
pled input vector u and the output vector y( k) is the 
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sampled vector y. The system matrix A = {ACij )} with Adaptation of error matrix 
i,j = 1,2,3,4 and it's sub-matrices 

ACi) ( gj) C:j) ) , a2 a 1 

A Cii) ( 0 0 ). C ii) ( ii) 
a2 a 1 

The control matrix B = {b(ij)} with 

o 1) 1 

(19) 

(20) 

(21) 

L(k) == P(k - 1) w(k) [I + ~ T (k) P(k - 1) w(k) r1 

(29) 

Parameter update 

p(k) = P(k - 1) + L(k) E. (30) 

l;pdate of covariance matrix 

o O)T. (22) P(k) = p/k) [P(k -1) - L(k) wT(k)P(k -- 1)]. (31) 

The measurement matrix is simply C = {CCij)T} with 

(23) 

This model structure yields 64 parameters to be esti~ 
mated, although all matrices have a total of 128 entries. 
Note, that these parameters are no longer parameters ha­
ving a physical meaning, but the result of various trans­
formations. Additionally the state vector is not identical 
with the sampled state vector ofthe originally continuous 
time model. 

3 Estimation algorithm 

Based on the new model, a prediction for the next time 
step can be made in the form 

x(k + 1) A(p(k)) x(k) + n(p(k)) u(k) + 
K(p(k)) E, (32) 

y(k + 1) = C(p(k)) x(k + 1). (33) 

The gradient matrix W is derived from the partial deri­
vative of the esti mation error as 

w(k) = _ (~E(k))T = (aY(k,p)l T 
ap ap ) 

(34) 

The identification algorithm is based Oil the innovations and is calculated recursively by 
model [4]: 

x(k+ I,p) A(p)x(k,p) + B(p)u(k) + 
K(p)[y - y(klp)] (24) 

y(k,p) = C(p)x(k,p) (25) 

with the Kalman matrix K(p). This matrix introduces 
:32 more parameters to the entire estimation algorithm, 
which means that there are 96 parameters to be estima­
ted. All parameters of this innovations model are sum­
marised within the parameter vector 

(26) 

The goal of this estimation algorithlll is to keep the esti­
mation error y-y( kip) as small as possi ble in terms of its 
statistical properties. Thus, it is necessary to minimise 
the error function 

1 N 

J(p) = 2" I:E2(k,p) ---+ Min. (27) 
k=l 

The minimisation of the error function results in the pro­
posed estimation algorithm which can be summarised as 
[1, 2, 4]: 

W(k + 1, p) [ACp(k)) - K(p(k))C(p(k))]W(k,p) 

+Mk-K(P(k))Vk' (35) 

w(k + 1) WT(k + 1, p) C(f>(k)) + Vr (36) 

The matrices and V k are model specific and result 
from the partial derivative of the innovations model as 

Mk :p [A(p) x(k) + B(p) u(k) + K(p) E] ,(37) 

V k :p[C(p)X(k)]. (38) 

Special attention has to be paid to the so-called for­
getting factor p( k) in equation 31. If this factor is too 
small (p(k) .zo:: 1), the covariance matrix will increase 
too fast, if it is too large (dose to 1), the algorithm will 
react too slowly to parameter changes. Therefore, the· 
forgetting factor needs to be controlled separately by a 
statistical value, which gives the change of the variance 
of the estimation error 

(39) 

Prediction error 

e = y - Y(klp). 
with Nl :::; N2 and o-;(N, k) as estimate for the error 

(28) variance with a variable memory N. The idea behind 
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this algorithm is, that under the assumption of a statio­
nary process, the variance of the estimation error in a 
steady state should be stationary as well. The increasing 
variance of the estimation error indicates a change in pa­
rameters of the plant under investigation. If 6( k) triggers 
a certain threshold, e.g. 20% of the mean variance, then 
the forgetting factor p( k) is reset to Po and follows the 
law such that 

p(k) = kp p(k - 1) + (1- k p) Poo (40) 

with Poo the final value and kp determining the rate of 
change. 

Since one has to guarantee that the covariance matrix 
in equation 31 remains positive definite, a special algo­
rithm for the covariance update has been used, based on 
the factorisation of the covariance matrix P = UDUT 

with U as upper triangular matrix and D a diagonal ma­
trix [5]. These matrices are updated separately by this 
algorithm. Additionally, the diagonal matrix is increased 
by r I with r > 0, if the covariance becomes too small. 

4 State Space controller 

The control law for a state space controller is defined as 

u=-Kxx, ( 41) 

with Kx = {k~ij)T} 
The poles of the closed loop system are determined by 
the closed loop system matrix Acl = A-BKx = {A~~j)}. 
with its sub-matrices: 

A (ij) ( 0 
a(ij) 1 k(ij) ) (42) c/ (ij) k(ij) 

a 2 - 2 1 - 2 

A (ii) ( 0 0 ) (43) (ii) k(ii) (ii) k(ii) c/ a2 - 2 a1 - 2 

The coefficients of the control matrix can be easily cal­
culated in the form 

(44) 

(45) 

with m = 1,2 and i, j = 1,2,3,4. The coefficients pc,;.i) 

are derived from the desired polynomial for each subsy-
stem 

Here, another advantage of a model description in con­
troller canonical form becomes obvious. All parameters 
of the state space controller can be calculated directly 
from the state space model using simple algebra. 

5 Simulation results 

The simulation model presented in section 2 was simu­
lated with the parameters as defined in Table 1. Further 

investigations have shown, that the nonconservative stiff­
ness parameter k mainly affects the system matrix A. 
Parameters of the measurement matrix C are influenced 
10-4 times less than parameters of the system matrix. 
The same is true for the Kalman matrix K. Therefore, 
these parameters need not to be estimated and only 32 
entries remain in the parameter vector p. 

After the model has been defined with all parameters to 
be identified, the matrices Mk and V k have to be calcula­
ted once according to equation (37). With these matrices 
the identification algorithm structure can be established, 
see equation (28) to (35). 

Since the system is open-loop unstable, a controller and 
an observer have to be designed in advance. This has 
been done according to the nominal system without 
cross-coupling effects. The poles of the closed loop system 
have been placed at Zl, ... ,8 = 0.97, or in the continuous 
complex plane to 81, ... ,8 = -288s- 1 , which would meet 
the eigenvalue for a mass-spring-system with a negative 
stiffness factor of the magnetic bearing. 

Similar to the controller, the observer poles have been 
chosen to Zl, ... ,8 = 0.75, which means that the observer 
is ten times faster than the closed loop system. There­
fore, the Kalman matrix in equation 32 is assigned pro­
perly. The initial parameter vector is set to the a priori 
values of the nominal system, in this case all parameters 
of the system matrix A with the initial covariance ma­
trix P = 1000 I. All other recursively calculated matrices 
have been set to zero. 

White noise with a maximum deflection value of 1J.tm 
for 11 is added to the measurement signal to ensure exci­
tation. The simulation is started with initial conditions 
x = 0 and all precalculated values for the controller and 
observer. The resulting displacements of the rotor at the 
bearing stations after ajump in the nonconservative stiff­
ness coefficient can be seen in Figures 2 and 3. 
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Fig. 2: Time history of the rotor displace­
ments after a change in the nonconservative 
stiffness parameter k from 0 to 107 N 1m at 
t = 0.01 s. 
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Fig. 3: Time history of the control currents 
after a change in the non conservative stiffness 
parameter k from 0 to 107 N 1m at t = 0.01 s. 

At t = 0.01 s the parameter k changes from 0 to 1 . 107 

N 1m. The jump is considered to be the worst case in 
turbomachinery application, e.g. a sudden pressure loss 
or leakage in sealings will lead to a parameter change in 
a linear model. Immediately after the parameter change 
the system is unstable in terms of its structure, but the 
displacements will increase slowly. When a certain signal 
to noise ratio is achieved, the parameter change is reco­
gnised by the algorithm and a change in the forgetting 
factor p is triggered (see Figure 4). This means, that the 
input and output signals have to contain a minimum on 
information to make the algorithm converge to the new 
system parameters (see Figure 5 and 6). 
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Fig. 4: Time history of forgetting control 
parameter {j and forgetting factor p after a 
change in the nonconservative stiffness para­
meter k from 0 to 107 N 1m at t = 0.01 s. 
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Fig. 5: Time history of a sample parame­
ter ap after a change in the nonconservative 
stiffness parameter k from 0 to 107 N 1m at 
t = 0.01 s. 

Since 32 parameters have to be identified, it is not expe­
dient to show the time histories of all parameters. Most 
of the estimated parameters of the system matrix do not 
change significantly, especially the parameters resulting 
from the rotor mass (Figure 5)., which appear at the dia­
gonal of the system matrix, namely a~ii), a~ii). However, 
non-symmetric parameters are highly affected by the ad­
aptation algorithm. A sample of the time history of those 
parameters can be seen in Figure 6. 
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Fig. 6: Time history of sample parameters 
a~3, at3, a~4, at4 after a change in the noncon­
servative stiffness parameter k from 0 to 107 

N/m at t = 0.01 s. 

Simultaneously with the identification, the controller pa­
rameters are calculated according to equation (44) and 
(45). It can be observed, that the feedback gain matrix 
of the state space controller becomes non-symmetric to 
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the same extent as the parameter of the nonconservative 
stiffness does. This effect can easily be seen in equation 
44. These non-symmetric entries in the controller ma­
trix will cause a force, which directly cOlllpensates the 
nonconservative forces of the system. 

Due to the adaptation of the controller the rotor bearing 
system can recover from a parameter change. Simulati­
ons have shown, that this positive effect is true for a 
certain magnitude of the nonconservative forces. If the 
parameter change is too large (l08 N/m), the control 
current becomes too large and the amplifier runs into 
saturation. Then, instability cannot be prevented. 

6 Conclusion 

It has been shown, that strongly time-invariant noncon­
servative cross-coupling forces in a rotor system can be 
controlled by means of on-line identification and adap­
tive control techniques. The system under investigation 
consists of a rigid rotor suspended hy an active magnetic 
bearings controlled by a state space controller. 

\Vithin a numerical simulation a non conservative cross­
coupling forC(' was applied to the system in conjunction 
with the proposed on-line identification and adaptive 
control. It turned out that a state space model identi­
fication is appropriate to estimate both the system pa­
rameters and the state vector. In this case, the non con­
servative cross-coupling forces were compensated by ad­
ditional forces generated by a non-symmetric gain in the 
state space controller matrix. This matrix is calculated 
by pole assignment from the identified state space model. 
This mea.ns, that the cross-coupling forces are compen­
sated by counter cross-coupling forces. 

Future objectives of investigation will be the extension of 
this concept by including integrative feedback and apply 
the algorithm to a higher sophisticated nonlinear simu­
lation mod,'1. If the algorithm succeeds with this rodel, 
an implementation on a test rig will be carried out. 
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