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ABSTRACT 

This paper utilizes the Q-parameterization theory to 
design a controller which solves the problem of imb­
alance in magnetic bearing systems.There are two meth­
ods to solve this problem using feedback control. The first 
method is to compensate for the imbalance forces by gen­
erating opposing forces on the bearing surface (imbalance 
compenstion).The second method is to make the rotor 
rotate around its axis of inertia (automatic balancing) ;in 
this case no imbalance forces will be generated. After 
the introduction of a mathematical model of the mag­
netic bearing system,the controllers which can reject the 
disturbances caused by imbalance on the rotor are de­
signed,based on the Q-parameterization theory. Simula­
tion results are presented and showed the robustness of 
the proposed controllers. 

INTRODUCTION 

This paper proposes a Q-paramrterization control for 
a rotating Active Magnetic Bearing(AMB) system. Imb­
alance in the rotor mass causes vibration phenomena in 
rotating machines. Since balancing is very diflicult,there 
is often a residual imbalance in the rotor. Moreover,the 
rotor sometimes becomes unbalanced while the machine 
is in operation. But this imbalance problem can be over­
come by proper contol. There are two methods to elim­
inate the vibration in magnetic bearing systems. The 
first method is to compensate for the unbalance forces 
by generating electromagnetic forces that cancel unbal­
ance forces(imbalance compensation).[1]-[3] The second 
method is to make the rotor rotate around its axis of 
inetia( automatic balancing)[ 4]. In this case no unbal­
ance forces will be generated. The Q-parameterization 
theory characterizes the set of all stabilizing controllers 
of a given plant in terms of a free parameter Q. The 
controller Q-parameter is then chosen such that design 
specifications are achieved.[5] In this paper we utilize 
the Q-parameterization theory to design a controller for 
a magnetic bearing system to stabilize it and solve the 
problem of imbalance. The design objectives are formu­
lated as a set of linear equations in the parameter Q. The 
parameter Q is found by simply solving this set of linear 
equations. 
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In imbalance compensation design,the imbalance is rep­
resented by sinusoidal disturbance forces. The controller 
is designed such that rejection of sinusoidal disturbance 
is achieved. In automatic balancing design,the imbalance 
in the rotor is assumed as a sinusoidal noise in the mea­
sured signal. Namely the sensor measurements should in­
dicate the motion of the principal axis of inertia plus geo­
metrical errors due to the difference between the geomet­
rical axis and the inertial axis. The controller is designed 
such that rejection of sinusoidal noise is achieved;thus we 
can make the rotor rotates around its axis of inertia and 
hence acieve automatic balancing. In this paper,4-axis 
controlled horizontal shaft magnetic bearing system is 
employed and the axial motion is not controlled actively. 

MATHEMATICAL MODEL 

In imbalance compensation design,a mathematical mo­
del of a magnetic bearing system has been derived in 
reference [6] ,and the obtained results is as follows. We 
assume that states Xv,Xh represent the motion of the ge­
ometrical axis and imbalance is represented by sinusoidal 
disturbance forces p2W. 

[XtI] + [Btl 0] [Uti] Xh 0 Bh Uh 
(1) 

[ YV] = [Cv 0] [xv] Yh 0 Ch Xh (2) 

In automatic balancing we assume that states Xv ,Xh rep­
resent the motion of the inertial axis,and the imbalance 
is represented by a sinusoidal sensor noise W. In this case 
the sensors read the motion of the inertial axis plus the 
sinusoidal noise W which represents the difference be­
tween the geometrical axis and the inertial axis. Then 
the mathmatical model of magnetic bearing system can 
be described by the following linear control system. 

[ ~: ] [-:AVh P1:h] [::] + [~v ;h] [::] 
(3) 

(4) 

where the subscripts 'v' and 'h' in the vectors and the 
matrices stand for the vertical motion and the horizontal 
motion of the magnetic bearing, respectively. In addi­
tion, the subscript 'vh' stands for the interference term 
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between the vertical motion and the horizontal motion, 
and p denotes the rotational speed of the rotor. Each 
vector in equations (1),(2),(3),(4) can be defined as 

:rv [gil gr1 gil 9r1 111 ir1 f, 
[g13 913 9r3 

.1' 
Xh gr3 '1IJ Ir:\] , 

Uv [ell er1 1T, Uh [ el3 C r 3 )"1', 

[ "in (pI + K) ] 
W 

Teos (pt + A) 
(COS (pt + 1\;) 
T sin (pt + .\) 

where 

gj : deviations from the steady gap lengths 
between the electromagnets and the rotor 

i j : deviations from the steady currents of the 
electromagnets 

ej : deviations from the steady voltages of the 
electromagnets 

f, T, K, A : unbalance parameters in [?] 

(j = 1l,rl,13,r3.) 

(5) 

The subscripts 'I' and 'r' denote the left-hand side and 
the right-hand side of the magnetic bearing respectively, 
and the subscripts '1' and '3' denote one of the vertical 
directions and one the horizontal directions of the rotor 
respectively. Each matrix in equations (1 ),(2),(3),( 4) can 
be defined as follows. 

o 1 A2Asd , 
-(R/L)I 

Avh:= [~ 
0 

~l ' [ 0 1 A3 E d '= 0 

0 . (IIL)1' 

Cd := [1 0 OJ, Ed := [E~d 1 ' 
(d=v, h), 

[ , 'f 
1 "'"] 

---- --+-
A2 

m J y Tn Jy 

-~+~ 1 I; 
--- --

m Jy m Jy 

A3 
Jx [-11 II ] 

Jy(ll + Zr) Ir 1 ' -r 

A4v - ~ diag[Fl1 + FI2, Fr1 + Fr2 ], 

A4h .- 2 . [ -Wdzag FI3 + F14 , Fr3 + Fr41, 

... 4b1J 2d' [Fll + Fl2 Frl Fr21 +--zag III It2 ' 1,'2.i ' 

A.sh . [F13 Fl4 Fr3 F,'4i 
2dzag T+ T' -+-1' 13 14 1r3 Ir4 J 

The parameters of a magnetic bearing system are given 
in Table 1. In the above equations, 0; denotes the coeffi· 
cient of the force which occurs when the rotor eccentri­
cally deviates, and hence we set 0; = O. 

Table 1: Magnetic Bearing Parameters 
Iparameter I Symbol I Value I Unit 

Mass of the Rotor m 1.39 X 10" kg 
Moment of Inertia about X J x 1.348 X 10- 2 kg. m 2 

Moment of Inertia about Y J y 2.326 X 10- 1 kg. m 2 

Distance between Center of 1/ ,r 1.30 X 10- 1 m 
Mass and Electromagnet 
Distance between Center of 1m 0 m 
Mass and Motor 
Steady Attractive Force FIl ,r1 

,OOX" U F,2_4,r2_4 2.20 X 10 N 

Steady Current In, r1 6.3 X 10-1 A 

[,2_4,r2_4 3.1 X 10-1 A 

Steady Gap W 5.5 X 10-4 m 
Resistance R 1.07 X 10 n 
Inductance L 2.85 X 10-1 I H 

Q-PATAMETERIZATION THEORY 

The Q-parameterization theory[7]-[8] states that the 
set of all stabilizing controllers for a given plant can 
be characterized by a free parameter Q. Consider the 
one-parameter-control feedback system shown in Fig.1 
to control the system described (1) (2) (3) (4). Where r 

+ + -I Y 
~C(SI-A) -r 

'-------~ 
Fig. 1: One-parameter-control feedback system 

is the reference input signal,W is the sensor noise,p2W is 
the disfurbance force,1l is the controller output, y is the 
plant output to be regulated,and K is the stabilizing con­
troller for P(s). Note that W ,p2W may also represent 
model uncertainties. To characterize the set of all sta­
bilizing controllers K for P(s) using Q-parameterization 
theory, first we need to construct a doubly coprime fac­
torization N,M, N, M,X,Y, X, Y E M(s) for P(s)(M(s) 
denotes stable transfer function matrices) .Such factoriza­
tion is possible if pairs (A,B) and (C,A) are stabilizerable 
and detectable pairs,respectivcly ( A,B,C are the system 
matrices of the state equations (1),(2),(3),(4)) To find 

N,M, N, AI, X,Y, X, Y, first we choose real m~trices 
Fl,F2 such that the eigenvalue8 of Ao=A.:::BF1 , Ao=A­
F2 C have negative real parts. Then N,M, N, lVl ,Y, X, 



Y can be expressed in terms A, B, C, Ao, Ao, Fl , F2[6]. 
Fl, F2 are obtained using the algebraic Riccati equation. 
With these choices, the set of all stabilizing controllers 
for P(s) is given by 
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In order to achieve this requirement the following iden­
tity must hold 

(14) 

K(P) = {(Y - Q .lVTI(X + Q M), IY - Q NI t= O} (6) CONTROLLER DESIGN 

CONTROLLER REQUIREMENTS 

The control problem for either design(imbalance com­
pensation or automatic balancing) can be defined as fol-
10ws:Find a controller K such that the following require­
ments are satisfied: 

1) The closed loop system is internally stable for all 
speeds p in a prespecified range. This constraints can be 
satisfied if and if only all poles of the closed loop have 
negative real parts. 

2) There is good robustness to variation of plant pa­
rameters and there is fast transient response. This re­
quirements can be satisfied if the following inequality 
holds. 

R(s;) + 0/ 8 < 0 (7) 

where Si denote the closed loop poles,and 0/ 8 is a positive 
number chosen to ensure a certain degree of stability. 

3) Damping Factor: In order to prevent undesirable 
high frequency oscillation and to help the magnetic bear­
ing system step through critical speeds safely, we must 
put a lower limit for the damping factor. To achieve this 
the following inequality must hold[5] 

(8) 

f3d is a positive constant chosen as a lower limit for 
damping factor and II(si)1 indicates the imaginary part 
of the complex number Si. 

4) There is asymptotic tracking to command signals. 
This tracking problem can be solved if we choose the 
controller Q-parameter Q such that 

(9) 

where W l is the transfer function that is from r to y 

WI =N(X +QM) (10) 

5) Asymptotic rejection of sinusoidal disturbance (imb­
alance compensation): let W 2 be the transfer function 
from p2W to y, then W 2 is given by 

W 2 = (I - N(X + Q M)) (11) 

In order to achieve this requirement the following iden­
tity must hold 

(12) 

6) Asymptotic rejection of sinusoidal sonsor noise (aut­
omatic balancing): let W3 be the transfer function from 
w to y, then Wa is given by 

W3 = -N(X +Q M) (13) 

In this section, we design the Q-parameterization con­
troller. At first we assume that the speed of the nominal 
plant is O. It means that there is no coupling between 
the vertical motion and horizontal motion. Therefore the 
plant model can be separated into vertical plant and hor­
izontal plant. 

P = [Pv 0] o Ph 
(15) 

Then,a controller will be designed for each plant. The fi­
nal controller K for the entire plant G will be constructed 
with the combination of these controllers. 

(16) 

Kv denotes the controller for the vertical plant and Kh 
denotes the controller for the horizontal plant. In order 
to satisfy controller requirements 1),2),3) we ch20se the 
matrices Fl, F2 such that eigenvaluse of Ao, A o lie in 
the domain D shown in Fig.2. And we choose the verti-

1m. 

, , , 
______ -~~~9'~------~ 

D , , 
, , 

Fig. 2: Generalized Region of Stability 

cal controller Q-parameter Qv and horizontal controller 
Q-parameter Qh such that the other requirements, equa­
tions (9),(12),(14), are satisfied. From (9) we have 

N",(O)(X", (0) + Q",(O) M ",(0)) = I, x = v, h (17) 

from (12) we have 

1- N",(jp)(X",(jp) +Q",(jp) Mx(jp)) = 0, x = v, h (18) 

from (14) we have 

- Nx(jp)(Xx(jp) + Q",(jp) M ",(jp)) = 0, x = v, h (19) 

Equations (18),(19) are complex equations and each is 
in fact two equations, one for the real part and one for 
the imaginary part. This means that we have three equa­
tions in the unknown Qx. Since we need to satisfy three 
equations,we should allow three variable coefficients. So 
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we take the vertical controller Q-parameter Qv and the 
horizontal controller Q-parameter Qh in the form 

( ) aVijs2 + bvijS + Cvij (20 ) 
qvij S = (S+P . 1)(S+P.2)(S+P.3) 

( ) ahijs2 + bhijS + Chij 
qhi) S = ( )( )( ) S + P.1 S + P.2 S + P.3 

(21) 

where avij, bvij , Cvij, ahij, bhij , Chij (i=l ,2j=1 ,2) are de­
sign parameters for the vertival motion and horizontal 
motion,and Psl , Ps2, Ps3 > O's are fixed. Then we have 
the following linear equations. For imbalance compensa­
tion 

A v1 X v1 = B 1, 

Ah1Xh1 = B 1, 

For automatic balancing 

where 

A v1 X v1 = B 1, 

Ah1Xh1 = B 1, 

Av1 = Nv( O) , 

Ah1 = Nh(O) , 

X v1 = Qv(O), 

Xh1 = Qh(O) , 

A v2 X v2 = B2 

A v2Xh2 = B2 

A v2X v2 = B3 

Ah2Xh2 = B3 

Av2 = Nv(jp) 

Ah2 = Nh(jp) 

X v2 = Qv (jp ) 

Xh2 = Qh(jp) 

B 1 = ( B 11 B 12 ) = (I - N x (O)Xx(O)) Mx( O) 

(22) 

(23) 

(24) 

B 2 = (B21 B22 ) = (I - Nx(jp)Xx(jp)) Mx (jp) (25 ) 
B3 = ( B31 B 32) = -Nx(jp)Xx (jp )) Mx(jp) 

where x=v,h . Solving equations(22),(23) for X v1 , X v2 , 

X h1 , X h2 we can easily find the design parameters avij, 

bvij , Cv ij, a hij , bhij , Chi j (i=1,2 j = 1,2) . 

SIMULATION R ESULTS 

We design the Q-parameterization controller by the 
methods discussed in the previous section . The con­
troller K(s) is designed for imbalance compensation and 
automatic balancing at speed p= 21T120radjsec. We choo­
se Ps 1 = Ps2 = P.2 = 50, andF1, F2 were obtained us­
ing the algebraic Riccati equat ion. The controllers Q­
parameter Qv, QII that can satisfy (17),( 18) for imbalance 
compensation design was found to be 

Q _ 2 .025etlO .2~5 , 385 et 13'-1.257et13 
v11 - . 3 t1508 t75008 t1.25 et05 

Q _ 5 ,603et07 .2-2.225et10.t1 ,05 et09 
v12 - ,3t150.2 t7500.t1.25et05 (26) 

Q _ 5,603 e t07 .2-2 ,225et10.t1 ,05et09 
v21 - .3 t150.2 t7500.t1.25 e t 05 

Q _ 2,025et10.2 t5,385et138-1.257e t 13 
v22 - ,3 t150 .2 t 75008t1.25 e+05 

Q _ 2,511et 1052t5,112et13 '-1.236~ 
h11 - • +15082+7500.t1.25 e +05 

Q _ 6,211et0782 2,83g e t10·t8,23et08 
h12 - .,,+15082 t7500.+1,25e+05 (27) 

Q _ 6,211et07.2 2,83get10.t8,23 et08 
h21 - .3+150 52+7500.+1,25e+05 

Q _ 2.511e+10.2 t5,11 2et13 . 1.236et13 
. h22 - .3 t15082t7500.+1.25 e +05 

The controllers Q-parameter Qv, Qh that can satisfy 
(17), (19) for automatic balancing design was found to 
be 

Q _ 4.634et10.'t7.323et13. 1.257et13 
v11 - .3+150.2+75008+1.25e+05 

Q _ 7 .144et07.2-1.9 42 e t11.t1.05et09 
v12 - 8 3 t150. 2 +7500.+1.25 e +05 (28) 

Q _ 7.144et078 2 -1.942et118t1,05et09 
v21 - .3t15082+7500s+1.25e+05 

Q _ 4.634et10,2t7.323et138-1.257e+13 
v22 - 8 +150 82 t7500.t1.25et05 

Q _ 5,035et10 82 t5,798et13. 1.236et13 
h11 - .3+150.2+7500 . +1.25e+05 

Q _ 1.54get07.2 1.644et11 . t8,23et08 
h12 - .3+150 .2 +7500.+1.25 e+05 

Q _ 1.54ge+0752-1.644et11.+8.23e+08 
h21 - 83+150.2 +7500 . t1 ,25et05 

Q _ 5 ,035et10.2t5,798et13. 1,236e+13 
h22 - 83 +150 82+7500 . t1. 25e t05 

(29) 
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(a) (b) 
Fig3:Complementary sensitivity fuction a(T)(p=21l"120) 

(a)irnbalance compensa tion, (b )automatic balancing 
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(a) (b) 
Fig4:Sensitivity fuction a (S)(p=21l"1 20) 

(a )irnbalance compensation,(b )au tomatic ba lancing 

Fig3,FigA show the singular values of complementary 
sensitivity function o-(T) and sensitivity function o-(S) 
for the imbalance compensation and automatic balanc­
ing when the speed of the plant is 21T120 . Fig .3 shows 
that the o-(T) equals one in the low frequency range for 
imbalance compensation design and automatic balanc­
ing design which indicates good tracking. Fig .3(b) shows 
that o-(T) is very small at the imbalance frequency for 
the autom atic balancing design . This means good sup­
pression of the imbalance noise. Fig.4 shows that o-(S) is 
very small at the low frequency for imbalance compensa­
tion design and automatic balancing design . This means 
that good disturbance rejection is achieved . Fig.4( a) also 
shows that o-(S) is very small at the rotational frequency 
for imbalance compensat ion design. This means that 
good suppression of the imbalance forces is achieved . 

l : ~ 
~ '----------~----.j 
" 4() • 
] 20 

j o,~--------~ 
-2°0 200 400 600 

T ime( ms) 

r:~ 
~ 6O .{ \'--_ _ _ ___ -___.j 

j :,b ________ _ 
.,u,LI _~_~._~_~ _ _ 

o 200 400 600 soo 
T ime(ms) 

(a) (b) 
Fig5:Step response at the ref. input of 50/lm(p=21l"1 20 ) 

(a )irnbalance compensation,(b )automatic balancing 
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(a) (b) 
Fig6:Response of a step disturbance force of (IN)(p=21!"120) 

(a) imbalance compensation, (b )automatic balancing 

Fig.5 shows the system response for a step at the re­
frence input of 50 p,m. The steady-state error is zero 
which shows that aysmptotic tracking is achieved. Fig.6 
shows the system response for a step disturbance force of 
IN. In Fig.5,Fig.6 the steady-state error is zero and the 
coupling between the vertical and horizontal motions is 
minimized. 
I.,,-----~-----------; 

10.: 

]-0:1\7 .~ -I 

~-1.5 
-~!---~W"-----~~'-----~~--8~0-~'OO 

Time(ms) 

(a) 

-'O!------.,20O:-----,40O:------;;60~----;;80,,------;!,OO 
Time(ffilI) 

(b) 
10,----,_--~-------,_____---, 

( c) 

Fig7 :Motion of (a )the geometrical axis, (b ) the inertial axis, 

(c)the bearing forces. (p=21!"120,imbalance compensation) 

Fig.7 shows the motion of geometrical axis,inertial axis, 
and magnetic forces acting on the bearing due to the imb­
alance for the imbalance compensation control design. 
In this case the rotor rotates around its geometrical axis 
with suppressed vibration because of the magnetic forces 
generated, but inertial axis is vibrating. 

-10C-U-~20~~40c'"-~~"---1J'-c80~'----'!-!'OO 
Time(ms) 

(a) 

(c) 

(b) 

1S 

Fig8:Motion of (a)the geometrical axis,(b )the inertial axis, 

(c)the bearing forces. (p=21!"120,automatic balancing) 
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Fig.8 shows the motion of geometrical axis, inertial axis, 
and magnetic forces acting on the bearing due to the 
imbalance for the automatic balancing control design. In 
this case the rotor rotates around its inertial axis with 
suppressed vibration. But geometrical axis is vibrating. 
Note also that no imbalance force is generated. 

Since the controllers are designed for the nominal plant 
with p=O, the results shown Fig.(3)-(8) for p=27r120 also 
indicate that robust stability and robust performance are 
achieved. 

CONCLUTIONS 

This paper deals with a method to control the vibra­
tion caused by imbalance in the rotor of 4-axis magnetic 
bearing systems. To overcome the imbalance in the ro­
tor of the magneic bearing system, we used two diferents 
ways. One approach is that the imbalance is modeled 
as a sinusoidal disturbance forces. The other is that 
the imbalance is modeled as a sinusoidal sensor noise 
in the measured signal. The Q-parameterization theory 
has been employed to design a controller whice stabilizes 
the system and achieves the desired goals. The controller 
Q-parameter can be found simply by solving a set oflin­
ear equation.The controllers that were obtained have 24 
stastes, with 4 inputs and 4 outputs. Simulation was 
done at speed p=27r120 with the controller designed at 
speed p=O(nominal plant). This results show good ro­
bustness to model uncertainties and show that the mag­
netic bearing systems can be used to control vibrations 
in rotating machinery in two different ways,by compen­
sating for the imbalace forces (imbalance compensation) 
or by making the rotor rotate around its axis of iner­
tia( automatic balancing). 
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