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Abstract: Optimal control with frequency-shaped cost 
functional is applied to the control of unbalance response in 
active magnetic bearing system. The active magnetic 
bearing system is modeled as a symmetric rigid rotor 
supported by two anisotropic bearings. The cost functional 
is expressed in terms of frequency dependent weighting 
matrices defined in the frequency domain so that a penalty 
is given over the rotational speed of rotor. The control 
scheme consists of two closed loops: one for the 
stabilization of system and another for the control of 
unbalance response. The control method renders the 
varying optimal feedback gains, as the rotational speed 
changes. 

The performance of this control method is evaluated 
through simulations to check its applicability to suppression 
of unbalance response or force in active magnetic bearing 
system. Simulation work is carried out at three rotational 
speeds: below the first critical speed, between the first and 
second critical speeds, and above the second critical speed. 
It is robust in the sense that it does not require accurate 
estimation of unbalance, whereas it still guarantees the 
system stability. 

1 Introduction 

Mass imbalance of the rotor in active magnetic 
bearing(AMB) system causes the alternating bearing forces 
and synchronous shaft whirl motions [1]. The alternating 
bearing forces can be alleviated by adding band-reject filter 
circuits in feedback loops or generating a rotating magnetic 
force. This would block the synchronous vibration from 
feedback and make AMB soft at the rotational speed. Thus 
the rotor tends to rotate with respect to its mass center 
reducing the unbalance force exerted to the bearing [2, 3]. 
The synchronous whirl motions of the shaft can be 
suppressed by providing electromagnetic forces which 
counteract the synchronous response arising from the 
unbalance [3, 4]. 

In this work, the synchronous motion of AMB system is 
controlled by optimal control with frequency-shaped cost 
functional. The cost functional is expressed in terms of 
frequency dependent weighting matrices defined in the 

frequency domain so that a penalty is given over a specific 
range of frequency [5, 6]. This frequency domain optimal 
control problem can be expressed as a time domain linear 
quadratic state optimal control problem via Parseval's 
theorem. We can effectively control the unbalance response 
of AMB system because this method renders the varying 
feedback gains according to rotational speed change of 
AMB system. 

2 Optimal Unbalance Control in AMB with 
Frequency- Shaped Cost Functional 

2.1 Equations of motion of rigid rotor AMB system 

Consider a rigid rotor magnetic bearing system, which 
can be modeled as a symmetric rigid rotor supported by two 
anisotropic bearings, as shown in Figure l. Then the 
equation of motion can be expressed, in the bearing 
coordinate, as 

(1) 

where 

rit} = {Yt (t} Y2 (t} zr (t } Z2 (t }}T , 

f t = fm (I) + feU} = {fyr (t ) f y2 (t) fzr (t) fZ2 (t }} T, 

fe{t) = {feYl (t) fey2 (t) fezl (t) fe z2(t)}T, 
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where M and G are the mass and gyroscopic matrices, 
respectively; ci t ), f m (t) and f e (t) are the displacement, 
magnetic and external force vectors defined in the bearing 
coordinate; m, J p and J d are the mass, polar and 

diametrical mass moments of inertia of the rotor 
respectively; ,Q is the rotational speed of the rotor; 
bI and b2 are the distances of the two radial magnetic 
bearings from the mass center of the rotor. The subscript T 
denotes the transpose of vectors. 

Linearizing the magnetic force with respect to the 
neutral position [7, 8], the magnetic force vector f m(t) due 

to small perturbations, ci t) , in air gap, and, i( t) , in current, 
can be expressed as 

fm (t) = K.i(t)-Kqq(t) (2) 

K i = dia( Kiy! KiY2 Kiz! Kiz2J , 

Kq = diag[KYI Ky2 KzI KZ2]' 

i(t) = bI(t) iy2(t) izI(t) iZ2 (t)r , 

Here Kq and K iq are the negative position stiffness and the 

current stiffness of each magnet, respectively. 

By combining equations (1) and (2), we obtain 

Mq(t)+Gq(j)+Kqcit) = f.(t)+fe(t), (3) 

where f. (t ) = Kii(t). 

When the rotor with eccentricity of 8 rotates around the 
inertial axis with an inclination angle of ¢ , equation (3) 
can be rewritten in the state space form as 

(4-a) 
where 

cit) = Cx(t) (4-b) 

where 

f. = diag( f/>ocos(fll + 00) f/>osin(a + 00) 'Po sin(a + r 0) 'Fa cos(nt + r 0) J 

(/>0 = m&.02 , ~ = (Jd - J p)#]2 /bl . 

where 14 and 04 are the 4 x 4 identity and null matrices, 
respectively, and Do and r 0 are the phases associated with 

the static and dynamic unbalances, respectively. 

2.2 Controller design of rigid rotor AMB system 

Consider the system (4) and the associated performance 
index 

J(u) = ~ao [xT( t) Qx x(t) +u T( t) R u(/)Jdt (5) 
o 

where Qx and R are the constant positive semi-definite and 

positive definite matrices, respectively, and x(to } is given. 

The performance index (5) may be rewritten in the 
frequency domain using Parseval's theorem [9] as 

where " - " implies the complex conjugate, and X(jro) and 

U(jro) are the Fourier transforms of x(t) and u(t), 
respectively. To further penalize the unbalance response, 
we can modifY the above performance index, by using a 
frequency shaping technique, as follows: Consider a band 
pass filter defined as 

Vq (jw) = N(jw)Q(jw) , N{jw) = 2 j~ow 2 ,(7) 
- w +2](,Qw+,Q 

where v q (t) , q = YI, Y2, zl, z2, is the filtered output 

of q(t }, and , Vq(jw) and Q(jw) are the Fourier transforms 

of Vq(t) andq(t), respectively. Here ( and a o are the 

damping ratio and input gain of the band pass filter, 
respectively. Note here that the center frequency is tuned to 
the rotational speed. Equation (7) is equivalent to the 
differential equation given by 

d 2vq(t) dvq (t) 2 . 
--==-2- +2(,Q-d -+,Q vq(t) =aoq(/). (8) 

dt t 

Rewriting equation (8) in the state space form, we get 

(9) 

where 

Then we can write the augmented plant state equation as 

(10) 

where 

x,(t ) = {~;n , A, = [nt~/)/\~ 1 , B, =[H 
,,(I) = {vy! (I ) vY2 (I ) vz! (t) VZ2 (I) vy! (t ) vY2 (I) vz! (t ) VZ2 (t )f 



Note that the augmented plant states consist of the original 
and filtered ones. The state feedback control law for the 
augmented plant, u,(t) =-K,x(t)-Kvv(t), is equivalent 

to the dynamic state feedback law for the original plant as 
[IOJ 

Ur(jW) = -Kr{jw)x(jw), (1l.a) 

Kr(jw} =Ks +Kv(jwI-ANrlACN, (H.b) 

where Ur(jw} is the Fourier transform of uf(t) and, 

Kx and Ky are the 4 x 8 feedback gain matrices. 

Now, in order to further penalize the unbalance 
response, we modify the performance index (6) as 

J(U) = 2~ J':()(T(j@)Q.(j@)x(j@)+ iV(j@)RU(j@)]d@ 
where (12) 

Qe(jm) = Q x + A~N(jmI- AN rT Qv(jmI- ANtI A CN ' 

Here Q v is the positive semi-definite matrix. It can then be 

easily proven that the cost functional (12) is equivalent to 

J{u) = I;[x; (/) Q e xe (t) + U T (t)R u{t)] dt, (13) 

where 

Here qll, q12 ' q21 and q22 are the partitioned 4 x 4 
original weighting matrices and, P1C and P d are the 

weighting factors. Then the control input, uf{t), of the 

optimal controller with the frequency-shaped cost 
functional can be represented as 

ur{t) = -Kv v{t) - Kxx{t) (14) 

Note that equation (14) reduces to the conventional optimal 
control scheme uo{t) = - Kxx{t) when Ky v{t) = O. Figure 

2 shows the block diagram of the unbalance response 
control of AMB system by the optimal control with the 
frequency-shaped cost functional. 

The Fourier transform of equation (4) gives 
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(jwI - A)X{jw) = BU(jw) + DoFe(jm) (15.a) 

Q('jw} = CX(jw) (I5.b) 

where Q{jw} and Fe{jw) are the Fourier transfonns of 

q{t) and fe{t), respectively, and C is the 4x8 output 

matrix. 

By using equations (II) and (15), we can write the relation 

between Fe{jw) and Q{jw) in the optimal control with 

frequency-shaped cost functional as 

Q(j@) = qj@I-A+B{Kx +Kv(j@I-ANfJ ACN)t DoFe(j@). 

The relation between, V r (j w), the reference input, and, 

Q('jw}, the displacement of the rotor, can then be written as 

Q{jw) = C[jWI-A +BHA(jw){K" +K,(jwI-ANrl ACN}f 

.. HA(jw)D"KjV,.(jw) , 
(16) 

where H A (jw) represents the frequency response 

characteristics of the power amplifier unit. 

3 Numerical Simulation 

In this section, performance of the optimal control with 
frequency shaped cost functional is evaluated through 
simulations to check its applicability to suppression of 
unbalance response or reduction of unbalance force in AMB 
system. 

The AMB system parameters for simulation are given 
as: 

r 
5.31 -1.34 

M = -1.34 7.03 
o 0 
o 0 

o 
o 

5.31 
-1.34 

fg ~ !1 III 
G = 0.245l-1 1 0 00 Jfl 

1 -I 0 

Kq =diag[1.l1 1.15 1.11 1.15]xI06 , 

Ki = diag [ 256 260 256 260] , 

B = 5f.11n, rjJ = 0.018, 00 = 0, r 0 = 0.78. 

The parameters required for the controller design 
empirically determined as: 

P; =5xl08 , pJ =5xI03 , «Ill =5x106 xI4 , 

«112 = 0.5 x 14 , «121 = qT2. Q22 = lOxI4 , (= 0.02. 

are 

Then the feedback gain matrices for a sub-critical speedfl 
= 3,000 rpm and a o = 10 are calculated to be 

f9119 1.2 121 -114 10 -1.2 0 g l 9356 -112 105 -1.2 11.5 0 
Kx =l-121 114 9199 1.2 0 0 10 -1.2 J ' 

112 -105 4 9356 0 0 -1.2 11.5 
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17857 
11691 

K v ==l-49 
17 

1673 
5904 

19 
6.5 

49 
-17 
7857 
1691 

-19 
-6.54 
1673 
5904 

24 
-0.4 
-0.5 
0.4 

0.5 0.5 -0.41 
25 -0.4 0.4 

0.4 24 -o.5J ' 
- 0.4 - 0.4 25 

Note here that the underlined elements in K v , which are 
significantly larger than the neighboring elements, are all 
positive. It implies that, when the rotor is run below the 
first critical speed, the bearing stiffness and thus the natural 
frequencies of the closed-loop AMB system are further 
increased by the optimal control with frequency-shaped cost 
functional. For example, the first critical speed is increased 
from 3,860 rpm to 4,340 rpm. Figure 3(a) shows the typical 
closed loop transfer function, possessing the characteristics 
of a notch filter but still ensuring the stability of the system. 
Figure 4(a) is the corresponding unbalance response plot 
against the rotational speed, implying that, when the rotor 
operates close to the tuned center frequency, the proposed 
method remains superior to the conventional method in 
attenuation of unbalance responses. 

When .Q == 7,800 rpm and a o=35, the feedback gain 
matrices are calculated to be 

[9182 20 328 -307 10 -1 0 gl K _ 186 9341 -302.6 285 - 1 11 0 
I - - 328 307 9182 20 0 0 10 Itj' 303 -285 186 9341 0 0 -1 

,-7597 347 -382 327 9.8 1.4 0 ~l 342 -8257 333 -282 1.4 8.2 0 
K v ==l 382 -327 -7597 347 0 0 9.8 1.4J -333 282 342 - 8257 0 0 1.4 8.2 

Note that the underlined elements in K v are all 
negative. It means that the proposed method tends to 
further lower the natural frequencies of the conventional 
optimal controlled system, when the rotor is run beyond the 
second critical speed. For example, the second critical speed 
is decreased from 5,020 rpm to 4,290 rpm. Figure 4(b) is 
the corresponding unbalance response plot against the 
rotational speed and Figure 3(b) shows the typical closed 
loop transfer function. Note that the high value of a 0 is 

chosen as the operational speed increases, particularly 
above the critical speeds. 

When .Q == 4,500 rpm and a o == 15 , the gain matrices 

are calculated to be 

,9196 4.3 179 -168 10 -1.2 0 g 1 K 7.2 9353 - 166 157 -1.2 12 0 
x = l-179 168 9196 4.3 0 0 10 -1.2 J 

166 -157 7.2 9353 0 0 -1.2 12 

13123 3196 -156 187 31.2 0.9 0.6 -0.51 l-3213 - 544 194 - 2l3 1 30 -0.5 
0 4 j Kv = 156 -187 3123 3196 -0.6 0.5 31.2 0.9 

-194 213 3213 -544 05 -0.4 1 30 

Note that the underlined elements in Kv, which are 
again significantly larger than the neighboring elements, 

can now be positive or negative. It implies that, when the 
rotor is run between the first and second critical speeds, the 
natural frequencies associated with the first(second) mode 
of the closed-loop AMB system are further decreased 
(increased) by the optimal control with frequency-shaped 
cost functional. The typical closed loop transfer function of 
closed loop is shown in Figure 3(c). 

Table 1 compares the unbalance responses and the 
control inputs of the rigid rotor AMB system by the 
conventional optimal control and the proposed optimal 
control with frequency-shaped cost functional for 
.Q = 3,000, 4,000 and 7,800 rpm: the unbalance responses 
for the latter case are kept far less by a factor of 2 or more 
than for the former case, without increasing the control 
forces. 

4 Conclusion 

The optimal control with frequency-shaped cost 
functional applied to the unbalance response control of 
AMB system gives proper feedback gains, depending upon 
the rotational speed of the system: it gives high feedback 
gains at low rotational speed and low feedback gains at 
high rotational speed. In addition, this control method does 
not require accurate estimation of unbalance while it does 
not degrade the system stability. The proposed method is 
proved to be effective through numerical simulations. 
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Table I Comparison of the unbalance responses and the 
control inputs of the AMB system. 

Conventional Method I Proposed Method 
Rotational 

3,000 rpm 4,500 rpm 7,800 rpm Speed 
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~ 
Figure I Modeling of a rigid rotor supported by two 

anisotropic magnetic bearings. 
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Figure 2 Block diagram of AMB system by optimal control 
with frequency-shaped cost functional 
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