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Although Hoc control design maintains good perfor
mance in frequency domain, the time domain perfor
mance is poor comparing with H2 control design. Major 
aim of the mixed H2 / Hoc control design is to combine 
these two performance measures in a single control objec
tive. In this study, the mixed H2 / Hoc control formula
tion is given in terms of Linear Matrix Inequality (LMI) 
based Hoc control design. The designed controllers ap
plied to an actual AMB spindle. The flexible rotor of 
the AMB system is modelled using finite element method 
and controllers are designed for this AMB system by tak
ing into account unknown higher order flexible modes 
and unknown disturbances of the plant. The controllers 
were discretized using bilinear transformation method. 
Utilizing this discretized controller, rotation tests up to 
45000 rpm were successfully completed. The LMI based 
Hoc control and Hz! Hoc control systems for the milling 
AMB spindle demonstrated good performance and ro
bustness. 

1 Introduction 

Robust control is one of the most important topics in 
recent years and many application studies of robust con
trol theory have been carried out succesfully [1-3]. In the 
last decade, Hoc control has been widely studied for the 
practical interests in many areas of control engineering 
such as robust stability and robust performance. From 
a computational point of view, the known Hoc control 
problems requires the solution of two Algebric Riccati 
Equations (ARE) with the some rank condition on sys
tem matrices in general. 
Recently, Linear Matrix Inequality (LMI) based control 
design approaches have begun to take place in the design
ing of control systems because of some good advantages. 
Many control problems can be solved in terms of LMI 
such as LQG control, Hoc control, mixed H2 / Hoc con
trol, etc. LMI problems are often convex and can there
fore be solved very efficiently. On the other hand, LMI 
problems generally don't have analytical solutions. How
ever, increasing computing power and developing effi
cient convex programing techniques and also availability 
of some good software as a toolbox make this approach a 
powerful tool for designing control problems. LMI based 
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control design approach described here is a complemen
tary or alternative approach to the known Hoc control 
and mixed H2 / Hoc control design approach and doesn't 
require any condition on system matrix such as rank con
dition. 
The research monograph [5] describes the LMI problems 
in control and system engineering with a mathematical 
sense in general. The studies [6] and [7] have made 
great contributions to designing suboptimal controllers 
by means of LMI. Practical engineering design problems 
can be solved using the LMI Control Toolbox [8] in MAT
LAB. 

2 LMI Based H 00 Control Formu
lation 

The formulation of LMI based output feedback control 
given here aims for practical use and for this reason the 
proofs of the formulation are not considered. References 
[5], and [6] have proved the formulation given here math
ematically. Optimal controllers are generally not unique 
for Multple Input Multiple Output (MIMO) systems. In 
practice, it is often not necessary to design a strictly 
optimal controller, and it is usually much cheaper to ob
tain controllers that are very close in the norm sense to 
optimal ones. These are often referred as suboptimal 
controllers. 
Consider state-space representation of a control system 
given by 

x = Ax + Bl W + B 2u 

Z = C1x + Dllw + D 12U 

y=C2x+D21 W (1) 

where x, y, z denote the state vector, the controlled out
put vector, and the measured output vector, respectively. 
u, w denote the control input, and the exogenous input. 
Matrix dimensions are A E Rnxn,B1 E Rnxm1,B2 E 
Rnxm2 ,C1 E RP1 xn,C2 E RP2 xn ,Dll E R P1 xm1,D12 E 

R P1 xm2,D21 E RP2 xml. Given any proper real rational 
controller such that 

Xk = Akxk + BkY 

U = CkXk + DkY (2) 
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The closed loop transfer matrix from w to z can be ob
tained by 

where 

[ 
Ao Bo 
Co Dll 
C D21 

] [ 

(3) 

Ao + BeC Bo + BeD 21 
Co + D21 ec D11 + D]20) D21 J (4) 

A 0 B1 0 B2 
0 0 0 h 0 

C1 0 Dll 0 D12 
0 h 0 Ak Bk 

C2 0 D21 Ck Dk I (5) 

Note that controller matrices are collected into a single 
matrix e. 
:F'rom the Bounded Real Lemma, there exists a positive 
definite Lyapunov function V(x) = ;z:T Px, P > 0 that 
satisfies 

and W Xc! is given in (9). The set of controllers of order 
k exists if and only if there exists some (n + k) x (n + k) 
positive definite matrix Xci that satisfies the LMIs (11). 
X::; 1 and Xci can be partitioned as 

Xci = r s 
L 

N -, [ R 
I J, X::;l = MT 

M 
I 

(13) 

where R, S E ~}(n)(n and 111, N E ~nXk(in ,Teorem 
3.). First, let's consider the W]<I>Xcl Wp < 0 constraint.. 
Substituting the Xci 1 into (12), one obtains 

[ AR+RAT AM B1 RCr 

1 
MTAT 0 0 AfTCr 

(14) <I> Xci - BT 0 -,I Drl 1 
C1R G\M Dll -,I 

Here P and null space of Pare 

[ 
W 1 0 

1 
P=[ 

0 h 0 
D

Or2 ] 
0 0 

BT 0 0 
Wp = 

0 Iml 
(15) 

2 

W2 U 

As can be seen, the second row of Wp is zero which 
(6) reduces the condition W},<I>xc/Wp < 0 to the following 

inequality 
Substituting equations given in (;3) into the inequality 
(6) and arranging it with the changing of the matrix 
variable Xcl = p- 1 , the H 00 suboptimal control problem 
is equivalent to the existence of a solution to the following 
inequality for Xci > 0 

(7) 

The LMI (7) can be reduced the following inequality 

where 

WcI = [ 
A6 X,cI + Xc/Ao 

B1; x cI 

Co 

XclHIl 
-,I 
Dll 

(9) 

The inequality (8) represents the typical linear algebra 
problem which arises in the general control problem. 
Here the problem is to obtain necessary and sufficient 
conditions for the existence of unknown controller ma
trix e satisfying the inequality (8). The solvability con
ditions of (8) have been given in [5] (Lemma 3.1). 
Denoting Wp and WQ matrices whose columns form 

bases of the null bases of Px cl and Q ,respectively. Equa
tion (8) is solvable if and only if: 

(11 ) 

where 

Bo x-leT 

1 
d -'0 

-,I D?~ 
Dll -,I 

(12) 

Defining 

B1 
-,I 
Dll 

W 1 

o 
W 2 

(16) 

( 17) 

where N Ii' denotes hases of the null spaces of (BI, DL). 
The inequality (16) call be written as 

(18) 

If the same procedure is followed for the second con
straint WJ\liXcl TVO < 0, one can obtains 

~ 1 < 0 (19) 

where Ns denotes bases of the null spaces of (C2, D12)' 
Finally, suboptimal control problem is solvable if and 
only if there exist symmetric matrices R, S satisfying the 
LMls (18) and (19) with the following constraint 

[~ ,~] ~ 0 (20) 

Supposing that LMls (18), (19), and (20) have been 
solved and (I?, have the following rank condition 

Hank(I - RS') = k ~ n (21 ) 
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The second step is to compute a positive definite ma- where 
trix Xel E ~(n+k)x(n+k) by using the following two full 
column rank matrices M , N E ~n+k q = [Xl 01 X2 O2 X3 03 X4 04 Xs Os] T 

MNT =I- RS (22) 

Substituting M and N matrices into (13), Xel can be 
computed easily. After computing the Xc/' the same 
inequality (8) can be used to compute the controller ma
t rix. Since the (8) is an LMI in 0, the controller can be 
obtained by the same optimization algorithms. 

3 Mixed H2 / Hoo Control 

If there are uncertainities in the system model, Hoo 
control maintains good robust performance. On the 
other hand, Hoo control design is mainly concerned with 
frequency-domain performance and does not guarantee 
good transient b ehaviors for the closed-loop system. H2 
control gives more suitable performance on system tran
sient behaviors. Combining H2 and Hoo control objec
tives in a controller is one further step in robust con
trol theory. Mixed problems can be solved adding the 
H2 control objective to known Hoo control design. T he 
mixed control may be described by the control objective: 
Find a controller 0 (s ) that minimizes IIF(s)112 subject to 
IIF(s)lloo < '"Y 
It is well known that H2 norm of the closed loop sys
tem is finite if and only if D2l = 0 and there exists two 
symetric matrices X 2 and M such that 

Bel 
-I 

(23) 

and Xi, Oi(i = 1, ... ,5) are displacement and angle of the 
rotor, respectively. X2 and x4represent the positions 
where the electromagnets are located, Mo is the mass 
matrix, Ko is the stiffness matrix. The mass distrubu
tion in the mathematical model was adjusted to agree 
with the experimental natural frequencies up to third 
flexible mode. The magnetic force due to the electro
magnet along the radial direction X can be modeled by 
the following equation: 

(28) 

where P is actuator total force on each direction. Pl 

and Pr are the left and right magnet forces , respectively. 
The flexible rotor is controlled by the attractive forces 
given in Eq.(28) . T he rotor-magnetic bearing system 
parameters used for modelling is shown in Table 1. The 
dynamical equation can be rewritten by 

Moq + Koq = Fp + D 

where 

F=[O 01 
000 

o 0 0 0 0 0 O]T 
000 100 0 

p=[:~] Pt = 2kl X 2 - 2k2i l 

Pr = 2klX4 - 2k2ir 

(29) 

and D represents the parameter uncertainty and external 
(24) disturbance. 

Trace(M) < e (25) 

where e is any number such that e > o. Here the follow
ing condition should be satisfied for mixed problems so 
t hat the LMI problem is tractable: 

X = Xci = X 2 (26) 

Finally mixed problems can be solved with constraints 
(24) and (25) plus Hoo constraints (18), (19), and (20). 

4 Modelling of Flexible Rotor 
Magnetic Bearing System 

The schematic drawing of rotor-bearing system is shown 
in Fig.1. The dynamics of the flexible rotor-magnetic 
bearing system will be described using Fig.2. For sim
plicity, the analysis is given in the X direction and all the 
coupling effects among the different axes and noncollo
cation are ignored. The discrete model of flexible rotor 
system given in Fig.2 is obtained using finite element 
method. T he rotor dynamical equations can be written 
as follows: 

Mo q +Koq = 0 (27) 

Frolll side magnetic 
bearing 

UtuU(d di.'plaamenJ 

... en.'wr 

Sensor 0 
Front 

2 

RelIT .\'ide magnetic 

bearing 

Iladiul displacemenJ 

sensor 

Fig.l AMB system 

xt e! V Sensor 0 

3 4 

Axial dLYplacemelJ1 

... ellsor 

Rear 

5 

Fig.2 Equivalent flexible rotor-bearing model 

Table 1. Parameters of AMB spindle 
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Parameter Symbol Value Unit 
Mass ml 1.22 kg 

m2 2.29 kg 
m3 1.55 kg 
m4 1.8 kg 
m5 0.98457 kg 

Lenght Ll 76.0 mm 
L2 90.0 mm 
L3 132.0 mm 
L4 28.0 mm 

Diameter d 59.4 mm 
Damping constant (i 0.002 
Gap ho 0.3 mm 
Bias current 10, 0.3 A 

tOr 0.3 A 
Bias attractive force Po, 23.54 N 

POr 21.939 N 
Sensor Gs 10000 Vim 

The bias attractive forces and the control forces of 
Eq.(29) are separated as follows: 

Moii+Kq=Fii+D 

where 

[ . .] T 
1 = 11 1,. K = Ko +Ki 

Ki = diag(O, 0, -2kl' 0, 0, 0, -2kl' 0, 0, 0) 

Fi = [ ~ o 
o 

o 
o 

o 0 
o 0 

o 
o 

o 
o 

(30) 

Using the modal analysis t echnique, it can be chosen the 
following normalized modal matrix, 

(31) 

Equation (30) is transformed into modal coordinates as 
follows: 

(32) 

where 

I = 'liT Mw n2 = 'liT Kw A = 2~n 
J; = 'liT Fi d = 'liT D 

and A is the damping matrix. The damping ratio is 
determined experimentally. T he state equa tion of the 
electromagnetic-mechanical system is given by 

(33) 

where 

Xf=[~ ~( u= 

I] Bf = -A 

If the rotor displacement at the magnetic bearings IS 

measured, t he output equation is 

(34) 

where 

Gf = [FTW 0] 

The control objective is to levitate the rotor and to main
tain the stability because control system is originally un
stable in open loop. There are only two unstable rigid 
modes, and the flexible modes are essentially stable. To 
design a controller for this high order flexible system is 
quite complicated. Therefore, the construction of the re
duced order model is considered for the aim of stabiliz
ing the two rigid modes and controlling the vibration of 
flexible modes. The reduced order model is constructed 
by truncation of the higher order modes in modal co
ordinates. The state equation and the output equation 
including up to the i-th order mode can be written as 
follows: 

x,. = A,.x,. + B,.u + Dr (35) 

y = GrX r = [X2 X4 1 T 

where 

Designing a controller using reduced order model may 
seems at first insufficient from the point of stability and 
robustness of the magnetic bearing system. One can 
think that higher order flexible modes may exicite system 
via noise, disturbance, etc. The main idea of Hoo con
trol t heory is to maintain stability and robustness even 
if control system has modelling uncertainty or paramet
ric uncertainity. In olJr control system, neglected system 
dynamics is known because of reduction and the con
struction of frequency shape filters are formed using this 
neglected dynamics. 

5 Simulations 

The simulation results are obtained using LMI Control 
Toolbox in MATLAB [7] . In this control system, there 
are two control inputs and two measured outputs. The 
order of the reduced-order system is four. Using the fre
quency shaping filter WI and W2 , the order of the aug
mented plant given in Fig.4 became eight. The frequency 
characteristics of the weighting functions are shown in 
Fig.5. 

r u M ~ . - - - - - .. .. -- .. ...... - - .. .. .. .... .. ...... .. .. ........ .. -- .......... .... .... -- .. ...... .. .... .. -- ................ ........ .. - - -- -1 Z I 

(;(s) 

L-______ -j K(s) '-_____ .....J 

Fig.3 Augmented plant 
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Fig.4 Frequency shaping filters 

Hoo and Mixed H2/ Hoo Con
troller Design 

The controller design process has two stages. In the first 
stage, the parameter I is optimized using the function 
hinfimi. The second step is to put the a certain I value 
into the function hinfimi again and to run it. If there ex
ists a solution, the convex optimization program solver 
will find it. From a computational point of view, find
ing a solution to an inequality is easier than finding a 
solution to an equality. This makes the LMI approach 
powerful comparing with the ARE solutions. On the 
other hand, it is not possible to get a solution for the 
exact value of I which is why this design opproach is 
called subopt imal control. The order of the suboptimal 
Hoo controller is eight. The Hoo controller bode plot 
and impulse response are shown in Fig.5 and Fig 7(b), 
respectively. 
The aim of this control design study is to improve per
formance in time domain using H2 control constraint. In 
LMI Control Tollbox, it is possible to give H2 constraint 
as a design objective using the function hi nfmix. De
signer should make some trade-off between H2 and Hoo 
control performance because both performance measures 
is given in different domain. The resulting controller or
der is the same as the Hoo controller. Fig.8 shows the 
LMI based mixed Hd Hoo controller characteristics and 
the impulse response of the closed loop system is given 
in Fig. 11. 

·l·I'~II·iil~ J~."Tli~L~ttn~![. 
Frequency {H::r:] 

:300 

ftWtHltlitEU 
-'O~o-· '00 ' 0' '0· '0" 10" 

FreQuency rHzl 

Fig.5 Bode plot of Hoo controller 

Fig.5· Bode plot of mixed Hd Hoo controller 
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(a) (b) 
Fig.7 Impulse responses (a)Hoo case, (b) HdHoo case 

7 Experiments 

The actual milling AMB spindle is used for experiments. 
Figure 8 shows the schematic block diagrarn of the digi
tal control system. Two displacements measured by two 
sensors in the radial direction go to DSP (TMS320C40) 
through AID converter and two control inputs are sup
plied to two electromagnets through D I A converter and 
power amplifiers. The sampling time was 0.125 msec 
(sampling frequency 8 KHz) . Figure 9 shows the mea
sured controllers by FFT analyzer after implementation 
on DSP. Figure 10 shows the step responses at lift off. 
The performance of LMI based controllers are very good 
with significant damping. The performance in the case 
of the LMI based mixed Hd Hoc control is the best be
cause the overshoot is the smallest. One can even eas
ily improve on the overshoot using the LMI based mixed 
H21 Hoo control due to its unique capabilities. Figures 11 
shows the impulse responses in levitation for the above 
mentioned controllers. High speed rotation test up to 
45000 rpm have been successfully completed. F igure 12 
shows the trajectories of the shaft center at 30000 rpm 
comparing with three cases. The maximum amplitudes 
are approximately 211m. 

Fig.8 Configuration of DSP-based control system 
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Fig.9 Measured discretized controller by FFT analyzer 
(a) LMI based Hoo (b)LMI based HdHoocontroller 
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Fig.l0 Step responses at lift off 
(a) Hoo case (b) H2/Hoo case 

(a) (b) 

Fig.ll Impulse responses at lavitation 
(a) Hoo case (b) H2 /Hoo case 

o 
(~ (b) 

Fig.12 Orbits for high speed rotation test at 30000rpm 
(The diameter is lOpm) 

(a) Hoo case (b}Hz/Hoo case 

8 Conclusions 

Rotation tests up to 45000 rpm have been succesfully ac
complished using LMI controllers. The LMI based con
trol system for the milling AMB spindle has good per
formance. The designed controllers given in this study is 
also compared with PID controllers, Riccati based Hoo 
controllers and p controllers. The improvement of per
formance in time domain is clear in the mixed Hd Hoo 
control case. Simulation results and experimental results 
of the controllers frequency charecteristics look like PID 
controllers. This doesn't mean the controllers don't have 
any dynamics. The controllers given here maintain ro
bustness to unknown system dynamics and uncertainites 
and may have more dynamic response increasing of un
certainty in a real control system operation. 
From the computational poin of view, the inequality 
conditions produce a set of solution which are convex 
and this makes LMI based control system design attrac
tive computationally. The design constraints-can also be 
added easily, especially for mixed H2/ Hoo control prob
lem. We belive that control system design for active 
magnetic bearing systems is still a challenging field for 
control engineers and requires alternative or complemen
tary design approaches. 
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