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Abstract: Due to high sUrface speed and active control 
capabilities, active magnetic bearings (AMB's) have found a 
niche in high speed machining spindle applications. This 
paper presents a formulation of the l1-synthesis based 

robust controller design problem for AMB machining 
spindles which uses specifications based upon cutting 
performances such as profiling, surface finishing and rough 
cutting accuracy. A new method for casting the machining 
chatter rejection tendency in terms of Ji based 
performance specification is presented. With this tool, 
controllers can be designed such that this tendency can be 
minimized. The formulation also includes uncertainty 
representing a range of cutting tools for the spindle and the 
AMB's. Synthesis results indicate that this formulation is 
effective in achieving robust cutting and chatter rejection 
performance. 

1 Introduction 

Figure 1 shows a schematic of an AMB machining spindle 
consisting of three radial magnetic bearings, termed the 
nose, mid-span, and tail bearings. The shaft is dual level 
with a large rotor on which all bearing journals and the 
motor rotor are carried, and a smaller drawbar located within 
an internal bore of the main rotor. The purpose of the 
drawbar is to actuate the cutting tool, allowing for tool 
changes, as several different tools may be used during a 
machining operation. The cutting force applied at the tool tip 
is also shown. The objective is to control the flexible shaft 
such that motion at the cutting tool tip is minimized. The 
challenge for machining is the complex nature of the cutting 
force and process dynamics. 

Previous work in robust control of flexible shafts using 
AMB's has shown promising results. Nonarni and Ito[5] 
described centralized 5-axis Il-synthesized controller design 
using a rigid body rotor model of a flexible rotor magnetic 
bearing system. Fujita[3] presented experimental results for 
Il-synthesized controllers suspending a non-rotating beam in 
magnetic bearings. In both works, experimental results 
showed superior performance of the Il-synthesized 
controllers over H= loop shaping and PID controllers. The 

performance was based on robust low frequency output 
disturbance rejection in the presence of input multiplicative 
or additive uncertainty. Formulation of the Il-synthesis 
problem in this manner is sufficient for a broad class of 
applications, however, characterization of machining spindle 
performance in cutting processes is significantly more 
complex. This paper presents a new formulation of the 
problem which is motivated by the cutting operation. 
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Figure 1: AMB Machining Spindle 
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The basis of robust control is accurately modeling system 
uncertainty using perturbations on the nominal model, and 
synthesizing controllers which perform in spite of the 
uncertainty. Complex perturbations, denoted !1(jW) , are 

norm-bounded using the transfer function 00 -norm, 

11.6.(jm ~L = supa[L\(jm)] (1) 
Cl) 

and are normalized by stable minimum phase frequency 
dependent weighting functions W(jw) , which are appended 

to the system model such that "!111~ ::::; 1 represents the range 

of uncertainty in the system dynamics. Similarly, real 
parameter perturbations, denoted lJ, are norm-bounded and 
normalized by constant weights, a, such that 

IllJlL ::::; 1 represents the range of uncertainty in real 

parameters. 
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Perturbation locations are preserved during controller design 
and analysis by using the structured singular value, Jl, as a 
measure of the closed loop stability and performance. The 

structured singular value of closed loop system M E Cnxn , 

for complex perturbations Ll E Cnxn , is defined as: 

1 
f1(M):= ---,-------

min(a(Ll):det(J - = 0) 
(2) 

where Ll is a member of the block diagonal set Ll. 

Computation of the structured singular value using equation 
2 is intractable, but bounds on Jl can be computed for 
complex perturbations using the following well-known 
relations [1]: 

maxp(rM)::; f1(M)::; inf(a)(DMD-1) (3) 
T'E[ DE12. 

where, among others, D is any real, diagonal, positive matrix 
with a certain block diagonal structure. Computation of Jl for 
mixed complex/real perturbations is accomplished using a 
similar set of equations [2]. 
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Figure 2: General LFT Representation 

Jl finds it'~ usefulness as the basis for a set of stability and 
performance tests for uncertain systems. Consider Figure 2, 
where M is the nominal closed loop system model with all 
performance and uncertainty weights included, Ll represents 
plant uncertainty and Ll p represents plant performance, 

where Ll p E ~. The relationship between the performance 

inputs, v, and outputs, w, is determined by the upper LFT on 
the block matrix M, and leads to the following stability and 
performance tests: 

J.lt..(M22 )<l 

J.lt..(M lI )<l 

J.lt.. (M) < 1 

Nominal Performance 

Robust Stability 

Robust Peiformance 

(4) 
(5) 

(6) 

where nominal performance is specified performance of the 
nominal plant, robust stability is stability of all uncertain 
plants, and robust performance is specified performance of 
all uncertain plants. Note that if robust performance is 
satisfied, then nominal performance and robust stability are 
implied as well. 

Design of controllers in a Jl framework is accomplished 
using the DK iteration method. Since the upper bound for Jl 

in equation 3 may be obtained by scaling and applying lit ' 
DK iteration proceeds by finding a stabilizing H= controller, 

K, and a scaling matrix, D, such that the following 
minimization occurs: 

where Ft (P, K) is the lower LFT between the open loop 

system, P, and the stabilizing controller, K [2]. 

3 System Modeling 

The nominal model consists of the AMB actuators, spindle 
dynamics, sensors, filters, digital controller, amplifiers and 
a cutting force description. The linearized force expression 
for the AMB's in each orthogonal direction, Xi, i=1,2, is 
given by the following equation: 

4CO{ f )J.loAN2 Ib 

Fj = g + g2 I p,i 

where N is the number of turns in each coil, A is the cross 
sectional area of each pole and g is the radial air gap. A 
planar, dual level rotordynarnic model of the spindle and 
drawbar is used. 
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Figure 3: Free-Free Rotordynamic Modes 
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Figure 4: AMB Machining Spindle Model 

The housing is assumed rigid and gyroscopic effects are 
negligible. The first six free-free critical speeds and 
modeshapes of the rotor and drawbar model including 
bearing and motor negative stiffness are shown in Figure 3. 
The first four modes are within the controller bandwidth. 
Modal damping of 1 % is included, and the bearing actuator 
and sensor locations are also shown. 

Sensors are modeled as a unity gain with noise, and low pass 
Cauer filters are used to suppress the noise. Pure phase lag is 
used to approximate the zero order hold and throughput 
delay of a digital controller. Power amplifiers are modeled 
using a first order approximate transfer function as given 
below. 

18600 
G =--

amps s+6200 
(9) 

The cutting force ~agnitude depends upon many factors 
which are specific to the machine tool and type of cut. 
Description of such factors is beyond the scope of this 
design. However, for the process of end milling of 
aluminum alloys, the predominant frequency content of the 
cutting force consists of harmonics of the cutting tooth 
frequency, !ct. a forced vibration, and machining chatter 
frequency,!c, a self excited vibration [7]. 

With this characterization of the cutting force spectrum, the 
following objectives with regard to controller design are 
formulated: (i) reduce the tool harmonic response at 
multiples of the toothpass frequency, !ct, and, (ii) suppress 
the onset of machining chatter which occurs at chatter 
frequency, !c. Machining chatter, which occurs at different 
combinations of running speed and axial width of cut, can be 
characterized by a limiting axial width of cut for stable 
machining at all speeds. This asymptotic stability borderline 
is given as [8]: 

1 
(10) b= 

2 KsRe[GJ 

where b is the axial width of cut at the limit of stability, Ks is 
the cutting stiffness of the workpiece material and Re[GJ is 
the real part of the oriented transfer function of the system. 
In the absence of a specific cutting process, chatter then 
occurs at the most negative real part of the dynamic 
compliance of the spindle at the cutting tool. Therefore, in 
order to satisfy objective (ii) listed above, the minimum real 
tip compliance of the spindle should be maximized. 

Figure 4 shows a model of the nominal system with all 
uncertainties and performance weights. The most significant 
uncertainty in the feedback loop enters into the system at the 
AMB actuators as the actuator nominal model does not 
include hysteresis, eddy currents, large deflections nor 
leakage or fringing effects. 

The feedback loop uncertainties are encompassed in a single 
guaranteed multivariable stability margin specification [6] 
at either the plant input, which represents actuator 
uncertainty, or the plant output which represents 
measurement uncertainty. The multiplicative uncertainties, 
Al - A6 , are complex, and the weights, W;=0.2 and 

Wo=0.2, correspond to a guaranteed multivariable gain 
margin of ±20% . 

Significant uncertainties occur in the modeling of the spindle 
rotordynamics because different cutting tools are utilized for 
different cutting operations by the machining spindle. The 
mass of possible cutting tools ranges between 0.00138 and 
0.0034 Ib.ilin. Due to this variation, the first natural 
frequency of the system varies between 29,254 CPM and 
34,890 cpM over the range of cutting tools. 
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The location of the cutting tool mass uncertainty, 8, in the 
machining spindle model is also shown in Figure 4. The tool 
mass is distributed in reality, therefore lumped mass is 
fedback at two locations along the of the nominal 

tool to approximate this condition, The tool mass 
uncertainty weights consist of two which is a 
rational transfer function and approximates a second order 

over the frequency range of interest, and a, the 
tool mass parameter, which represents a real parameter 
variation, The rational transfer function used is in the 
following equation. 

Wm =2.35e8 (s+100)(s+200) (11) 
(s+ lO,OOO)(s+ 11,000) 

The tool mass variation is taken as half the mass of the 

largest tool, such that a=0.0017 (lbl . s2 I in). 

4 Performance Specification.s 

Referring once again to Figure 4, the performance weights 
WI' Wr and We which limit direct tip compliance, real tip 
compliance and controller effort, respectively, are shown. 
The performance inputs are shown as w=[ IV" IV" WeI, We2' Wc3]' 

and the performance outputs are shown as 
v=[VnVt>Vc1,Ve2>Vc3]" Also shown are the bearing forces, Fm 
F"" Ft, and the shaft displacements, XII> X"" Xt at the nose, 
midspan and tail sensors respectively. Finally, inputs Fc1 
and Fe2 represent applied forces at the cutting tool tip and 
tool midspan, and outputs Xci and Xe2 represent the 
displacement at the cutting tool tip and tool midspan, 
respectively. 

Compliance of the spindle at the cutting tool tip is an 
indicator of how the spindle may perform in certain cutting 
operations. For instance, static tip compliance, Gdo 

indicates the positioning accuracy of the tool tip, and low 
frequency tip compliance, Glf, indicates the profiling 
accuracy of the spindle. The latter frequency range is 
determined by considering the maximum acceleration of the 
spindle by the machine tool in which it is mounted, and the 
radius of curvature of possible profiles that may be cut with 
the spindle. The limit on acceleration is 0.5-1.0 g's in typical 
spindles, therefore the low frequency range is taken as 50-
400 rad/s which corresponds to cut radii as low as 0.002 in. 

The medium frequency tip compliance, Gm} indicates the 
rough cutting performance of the spindle. The medium 
frequency range is taken as the toothpass frequency range 
corresponding to the spindle operating speed. 

Finally, the high frequency tip compliance, Ghf, indicates the 
performance of the spindle in finishing cuts. This range is 
taken as 10,000-100,000 rad/s. All four tip compliance 
frequency ranges are encompassed in a single performance 
specification, Wt, given by the following transfer function: 

W. = s+50 (1 ) 
t 6E-5(s+1O) 2 

which allows a static compliance of 12.3K6 in/lbf, and a 
dynamic compliance of 5 times the static. 

A performance weight requiring minimum control effort 
provides for the maximum allowable cutting force and 
sensor noise. The control effort performance weight is 
by the following transfer function. 

s+4000 

20000(s+ 32000) 

This specification is applied only to the direct control effort, 
not the cross-coupled terms in the MIMO controllers. 

As previously shown, the minimum real tip compliance, Gre , 

is an index of the tendency of the spindle to chatter and 
therefore must be maximized. Incorporation of this criterion 
as a performance specification requires a different 
formulation than the previous criterion. A real tip 
compliance specification requires a negative unity feedback 
loop around the tip compliance transfer function, Figure 
5 illustrates such a block below and leads to the following 
theorems [4]. 
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Figure 5: Real Tip Compliance Performance Block 

Theorem 1: If 11Ft < 1 then: 

R CG' 1 
el e i > - 2W. 

r 

Proof: At a particular frequencyGe(jro)=a+bj, where a 

and b arc the real and imaginary parts of Ce, and the 

condition Ilpt < 1 requires: 

I GeWr < 1 (15) 
1+ GeWr 

or 

I (a+bj)W, 1<1 
l+(a+bj)Wr 

(16) 

converting this equation to the squared magnitude yields: 

(aWr)2 -(bWr)2 < (1+aWr)2 -(bWr)2 

which simplifies to: 

for Wr > O. 

1 
a>---

2Wr 

(17) 

(18) 



Theorem 2: If Ilpll~ < 1 then the major feedback loop in 

Figure 5 is stable. 

Proof: By definition IIApt < 1. Therefore, by the small 

gain theorem, Theorem 2 holds. 

Theorem 1 provides the means of specifying the minimum 
real tip compliance, while Theorem 2 provides a means of 
casting this specification in a )l framework such that DK 
iteration will work to achieve it. One caveat must be 
mentioned when using this method: the minor feedback loop 
must be stable. This is guaranteed by the small gain theorem 

if IICeWr ll~ < 1, which implies that IICelL < Wr-1 IS 

sufficient. Figure 6 illustrates the requirement upon the tip 
dynamic compliance, Ce, in the complex gain plane for 
specification of real dynamic compliance. 
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Figure 6: Requirement On Dynamic Compliance for 
Specification Of Real Dynamic Compliance 

Typically, values of the dynamic compliance, Ce, are 
relatively small. Therefore stability of the minor loop is 
likely. For the spindle, the real tip compliance weight is 
taken as Wr = 15000, which corresponds to a minimum real 
tip compliance of Re[Cc] > -3.33e·5 inllbf This 
specification is motivated quite arbitrarily by using the 
resulting minimum real tip compliance from nominal 
performance of the system under PD control as a benchmark. 

5 Results 

Four different controllers, KJ - K4, were designed using 
different combinations of the performance and uncertainty 
weights. The system was evaluated for each of the 
controllers using the robust performance test of equation 6 
relative to only those performance specifications and 
uncertainties used for the controller design. Robust and 
nominal performance of the system with each controller is 
summarized in Table 1, including Jlmax and the resulting 

controller order. Note that the plant order for this system is 
58, compared to controller orders of about 100. Of course, 
for experimental implementation the order of such 
controllers should be reduced. 
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Table 1: Performance With Design Weights: 
s+50 s+4000 1 J 

Wl- ,W2 ,W3=--, W4=-, 
6e-5(s+ 10) 20000(s + 32(00) 5e-2 2e5 

W = 235e8 ($+ 1(0)(s + 200) 
5 (s + 100(0)(s + 20000) 

Controller Kl K, -x;: Il:. 
Order 103 104 104 78 

1' ...... 0.61 0.58 1.113 0.99 
D W. WI Wl Wl W3 

R e w? 15000 
0 • We W, W, W, W. 
b Wo o.~ o.~ 

u W W . - O.l - -
• t W_ - Ws 

P t • " -(J.UOT7 

e (Ibt ···. ) 
r G". 0 .1 0.8 6 .0 11l0.1 
f N (1#) 
0 a GIl l.6 l.9 8.4 11l0.1 
r m (*) 
m i G_I 18.4 l3.5 :15.7 68.3 
a n ('f#) 
n a G"'I 18.4 :/3.5 l4.3 4 .3 
c: 1 (1#) 
e ~. -9.6 -9.3 -8.l -187.0 

(m:) 

7F. 0 .1 5 0.17 1.l3 16l.3 

5.1 Robust Performance 

Controller Kl is designed to satisfy the maximum tip 
compliance specification, WI' using the minimum control 
effort, Wco for all uncertain plants represented by an output 
multiplicative uncertainty, Woo Controller K1 gives the worst 
case direct tip compliance indicating cutting performance, 
notwithstanding chatter, for a spindle operating with the 
nominal cutting tool using the specified amount of control 
effort. Robust performance results as Jl max=- 0.61 for this 

case. 

Controller K2 is designed for the same weights as in K1 
except the feedback loop uncertainty is at the plant input, Wi. 
Very little difference in robust performance is seen between 
uncertainty at the output or at the input of the plant as Jl max 

= 0.58 for this case. 

Controller K3 is designed for the same weights as in KJ 
except that the specification on real tip compliance, W" is 
used to improve the chatter rejection tendency of the spindle. 
Again, this is done only for the nominal tool. Results for Cre 
in Table 1 show that using the real tip compliance 
performance specification results in a 15 % improvement in 
chatter rejection nominal performance of the spindle over 
the other cases. This illustrates the success of the minimum 
real tip compliance performance specification as formulated 
in section 5 . Note that Jl = 1.12 for this case, indicating the 

difficulty in achieving both direct tip compliance and real tip 
compliance minimization simultaneously for all uncertain 
plants. 

Finally, controller K4 is designed to accommodate variations 
in tool mass, Wm. This controller design reveals the level of 
guaranteed performance over the range of all cutting tools 
that can be obtained. Note for this case the performance and 
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uncertainty weights must be significantly less restrictive than 
in previous cases in order to satisfy the robust performance 
test condition. 

The results indicate good cutting performance and chatter 
rejection tendency for the system with the nominal tool and 
uncertainty in the feedback loop. However very poor 
performance results when significantly different tools are 
used for the same controller. This indicates that a different 
controller for each range of tools should be used. 

5.2 Nominal Performance 

Nominal performance of the static, low frequency, medium 
frequency, high frequency, and minimum real compliance at 
the tool tip is also given in Table 1. Smaller compliance 
magnitudes indicate better cutting performance for each of 
the frequency ranges. 

For a means of comparison, the ratio of static compliance of 
the nominal cutting tool as mounted in the spindle to the 
static compliance of the nominal cutting tool if it were 
cantilevered is given as CdlCt, where Ct = 4.9 fl inllbf. Note 

that for controllers KJ and K2 this ratio is less than unity 
indicating a better static compliance for the cutting tool 
when supported by the spindle than when simply 
cantilevered; but how can this be? 

This phenomenon occurs because the Jl synthesized control 
actually lifts the shaft at all bearing locations to meet the 
performance specifications. This is illustrated in Figure 7 
where a typical PD control solution, which attempts to center 
the spindle at the bearings, is shown for comparison. 
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Figure 7: Static Deflection Profiles 

Figure 7 indicates that a significant amount of deflection 
could occur at the backup bearings and midspan bearing due 
to the lifting. If the spindle is lifted too much, then a loss of 
bearing stability is likely to occur. Thus an additional set of 
performance specifications, which limit shaft displacement 
at critical locations along the shaft, should be included 
during controller synthesis . 

6 Conclusions 

The following conclusions can be offered from the above 
work: (1) fl-synthesized control can be used effectively to 

design for improved cutting performance of AMB spindles; 
(2) the chatter tendency of the spindle can be minimized 
using a performance block such that the minimum real part . 
of the dynamic tip compliance is maximized; (3) only a 
small difference in performance occurs if feedback loop 
uncertainty is correctly modeled at the plant input as 
compared to the plant output; (4) when a large range of 
cutting tools are used in machining, very poor performance 
may result if the same controller is used for all tools; (5) a 
performance specification which limits shaft deflection at 
locations along the shaft with small clearances is required in 
this formulation. 
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