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Abstract: This paper develops a one-dimensional 'R 
model of the magnetic flux to estimate the magnetic t 
forces by including the pole face curvature. Accounting x, y 
for the pole face curvature results in a normal force that X, Y 
is perpendicular to the principal force; this causes ge- a 
ometric coupling of force$. The non-dimensional equa- 6 
tions of motion are derived for a point mass rotor in one I': 

magnetic bearing with P D current feedback and geometric A 
coupling. The steady-state nonlinear vibrations are then ( 
investigated. The rotor-bearing system has the softening 7J 
spring type nonlinearity and exhibits characteristic jumps Ouj 
and hysteresis. When speed is increased, the presence of Oxu 

geometric coupling increases the rotor displacement be- 110 
f ore the jump and decreases the displacement beyond the T 

jump. Geometric coupling also causes quasiperiodic vi- w 
bration of the rotor. The (a)periodicity of the rotor mo- Wn 

tion is discussed using Poincare maps and bifurcation di- n 
agrams. Increasing the differential gain of the controller 
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1 Introduction 

Active Magnetic Bearings(AMB) levitate a rotor by the 
attractive forces generated ina magnetic field due to 
the electromagnets . The AMB are electro-mechanical 
systems with their stiffness and damping properties de
pendent on both electronic and mechanical components. 
T hus the stiffness and damping of the rotor/bearing sys
tem can be controlled . T he magnetic bearings also have 
several other advant ages such as rotor speed being lim
ited by the strength of the rotor material , low bearing 
losses , etc. r1] . Due to such features, the magnetic bear
ings are finding increasing number of applications in ro
tating machinery. 

Gyroscopic effects cause Hopf bifurcation of rotor 
equilibrium position r2]. T hey use a nonlinear feedback 
control to stabilize the resulting unstable limit cycle. 
The nonlinear resonant frequencies were obtained for a 
rotor - magnetic bearing system with proportional con
trol using the perturbation method of multiple scales [3] . 

The normal and attractive principal forces of electro
magnets were experimentally determined in r 4]. Their 
two-dimensional finite element model predicted the pres
ence of normal forces . Including geometric coupling and 
using flux control results in multiple solutions at primary 
resonance of a point mass rotor [5]. They also obtained 
fractal boundaries separating stable and unstable regions 
in an eccentricity - rotor speed diagram and discussed the 
effects of other system parameters on these regions. 
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By allowing the air gap at a point on a pole to be a 
spatial function of rotor displacement and not constant 
over the entire pole area, this paper includes the poles' 
curvatures in estimat ing the magnetic forces. This is 
done by modifying a one-dimensional model of the mag
netic flux using a "variable reluctance" approach. This 
results in the presence of norma.l forces, thus causing 
geometric coupling of forces. The results from this ap
proach are then verified by comparing to those obtained 
from a two-dimensional finite element method and from 
exper iments of [4]. 

The forces of a magnetic bearing wit h linear current 
control are nonlinear functions of rotor position and cur·· 
rent . Thus the model used here is nonlinear despite the 
geometric coupling. This is different from the case when 
a flux control is used where the nonlinearity is only due 
to t he geometric coupling as in [51. Thus this paper stud
ies the effects of geometric coupfing on t he steady-state 
response of a rotor in a magnetic bearing system with 
current control. 

As t his paper studies the rigid body vibrations, the 
assumption of co-location of sensors and magnetic bear
ing is suitable. W hen t he flexible modes of vibration are 
to be considered, collocation becomes an important is
sue; see [6] and [71. Some novel control strategies were 
used to minimize the vibration at resonance for a flexible 
mode in [8]. 

2 Rotor-Bearing Model 

The AMB consists of four electromagnets placed sym
metrically about the horizontal and vertical axes . PD 
Controller / Power Amplifier pairs are used in indepen
dent - axis control. A pair of identical displacement sen
sors measure the positive x and y displacements as shown 
in Fig. 1. 

Current control is used in the feedback loop. The 
current input to each pole-pair is the sum of a bias cur
rent and a cont rol current. T he currents are input to 
the "left" and "right" pole-pairs in a "differential driv
ing mode" as given below: 

h,R = Ibias ± (Cp x + CD x) (1) 

where Cp and CD are t he controller's proportional 
and differential gains. This setup requires only one con
troller/amplifier pair per axis. Likewise, in the Y direc
tion, 

IB,T = hias ± (Cp Y + CD Y) (2) 

2.1 Magnetic Forces 

'R. = L/(110A) B = /1oH 

ra is rotor radius, h is pole wid th, and /10 is the per
meability of free space . 

The above equation implies that the reluctances of 
the two gaps of a magnet are the same. Including pole 
face curvatures into the model results in different gaps, 
reluctances for the two gaps . This is accomplished by 
modifying Eq. 4. 

(5) 

where 
(6) 

The validity of such an approximation is verified by 
comparing the results with those available in literature: 
theoretical- two-dimensional finite element method, and 
experimen tal . 

The following analysis considers pole curvatures , gap 
lengths , reluctances and flux densit ies t o obtain the 
forces exerted by a magnet ic pole on the rotor as func
tions of rotor position. X-Y is t he globally fixed coordi
nate system whose origin is the bearing center 0, v-v 
is the line-of-centers coordinate system whose origin is 
t he rotor position (x,y) . The angle from the X-axis to 
U-axis, Oxu, is dependent on rotor position . 

2.1.1 Gap length 

Gap length for pole j at an angle OJ from U-axis is given 
by 

where c is t he magnetic bearing's radial clearance. 
For a pole that subtends 300 at 0, then, the lower 

and upper limits of Bj are Buj and Buj +71"/6, respectively, 
where Buj is the angle from U-axis to the beginning of 
pole j in the counterclockwise direction . 

2 .1.2 Gap Reluctance 

Gap reluctance for pole j, 'R.gj, is given by: 

(8) 

2.1.3 Flux Density 

Ampere's law relating the magnetic field strength H and The flux density for pole j is given by 
the current N I that causes it for an electromagnet is 

f H .d/ = NI (3) 

Neglecting the reluctance of stator and rotor material 
in comparison to that of gap's, the above equation can 
be written as 

2nBA=NI (4) 

where 

B .(B .) _ 3Fjl10 1 
J J - 7I"C 1 + f. cosBj 

(9) 

where :F = llNI, if j is odd, and F j = (1 - ll)N I , 
otherwise; 1= IR for j=1,2, I = IT for j= 3,4, etc. 

2.1.4 Forces 

T he attractive force of a pole on the rotor has compo
nents in U and V directions: 



(10) 

and 

FIJ' = :Fj 2 /lOTa h J sin OJ dO· (11) 
J 8c2 (l+fcosOj)2 J 

The integrals in the above expressions are evaluated 
in [9]: 

8 -1( f+ cos OJ ) --;:==cos 
~ l+fcosOj 

A (12) 

where 8 = 1 for sin OJ ;::: 0 and 8 = -1 for sin OJ < O. 

J sin OJ dO.={ f(l+f~OSDj) iff¥O 
(1 + f cos OJ )2 J - cos OJ otherwise 

(14) 
The forces in the X, Y directions are obtained by the 

coordinate transformation: 

Frrj Fuj cos Ourr + FlJj sin Ourr (15) 

Fyj = - Fuj sin Ourr + FlJj cos Ourr (16) 

The resultant force on the rotor due to the magnets 
has the components: 

8 

Frr = :L:Frrj, 
j=l 

2.2 Model Verification 

(17) 

For an electromagnet, the principal force is along the 
axis of symmetry of, and towards, the magnet. A nor
mal force exists only if the rotor is offset from this axis of 
symmetry and it is in the direction of the offset and per
pendicular to the principal force. To verify the accuracy 
of the present model, the normal force (X-direction) of 
the magnet in positive Y direction is estimated for the 
offset value x/c = 0.45 for several Y positions. Compar
ison to the two-dimensional finite element model results 
and experimental results given in [4] is shown in Fig. 2. 
In the figure, 'ktest' and 'kmodel' refer to the experimen
tal and FEA results of [4], and 'this' refers to the model 
used in this paper. The present model compares well 
with the finite element model, and the differences are 

,&,'J 

perhaps because their model includes material B-H non
linearity also. Both the theoretical models, however, un
derestimate the normal force. The principal forces from 
the theoretical models agree well with the experimental 
results but are not presented here. 

To use the higher geometric coupling values found 
from experiments, following [4], for a magnet the princi
pal and normal forces are given by 

_B2_A _ /loA(N 1)2 
4L2 

(18) 

(19) 

where L is the constant gap for a pole-pair obtained 
from Eq. 7 with OJ now being the angle between the 
U-axis and the appropriate principal axis' 
n = x/c (if Fn is along X-axis), n = y/c (otherwise); 
a is the geometric coupling coefficient which from exper
iments was reported to have an average value of 0.16. 

The resultant magnetic force on the rotor has the 
components 

Frr FR - FL + a(x/c)(FT + FB) 
Fy FT - FB + a(y/c)(FR + FL) 

2.3 Equations of Motion 

(20) 
(21) 

For a rotor with a mass imbalance eccentricity of e and 
rotating in the counterclockwise direction the equations 
of motion are 

mx 

my 

Frr + mew2 cos wi 

Fy + mew2 sinwi 

Defining dimensionless variables as 

x =x/c 
y = y/c 
E = e/c 
l' = wni 

G pN = cGp/lbia, 
G DN = cwnGD/lbia, 
0= w/wn 

where the linear natural frequency is given by 

/loAN2 Ilia, G p N 

mc3 
The damping ratio is 

(= GDN 
2GpN 

The dimensionless equations of motion are 

X" FRN - FLN + aX(FTN + FBN ) + 
E02 cosOr 

yll FTN - FBN + aY(FRN + FLN) + 
E02 sinOr 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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where the prImes are derivatives with respect to r, 
and 

[l-(GPNX+GDNX'lF 

FRN 
l-X (28) 

4GpN 

[l+(GPNx+GDNX'lF 

FLN 
l+ X (29) 

4 G pN 

[l-( GpNY+GDNY'lF 

FTN 
l-Y 

(30) 
4GpN 

[l+(G pNY +GDNY'lF 

FBN 
l+Y (3 1) 

4GpN 

Thus the parameters in the dimensionless equations 
are t he stiffness term G P N, damping term G D N , rotor 
speed term n, eccentricity term E, and the geometric 
cou pIing coefficient 0:. 

3 Analysis 

In t he following, various non-dimensional parameters are 
studied . Fig. 3 shows the stable Y-diredion forces for 
various values of the stiffness term G P N in the absence 
of geometric coupling. Clearly for a positive Y displace
ment, a st able restoring force in the Y-direction has to 
be negat ive . For a given value of Y, the larger t he value 
of GpN t he larger is the rest oring force. T he figure also 
shows t hat with increasing Gp N the m aximum possible 
value of FY_ decreases and the peak values occur at lower 
values of y . 

To ob t ain the rotor motion, the equations were nu
merically integrated using the fourth-order Runge-Kutta 
method. Fig. 4 shows the frequency response curve in 
the absence of geometric coupling. It shows the softening 
spring characteristic, jumps and the hysteresis region of 
this nonlinear rotor-bearing system. As numerical inte
gration is used, only stable solu tions are obt ained. 

Figure 5 shows t he frequency response curve for the 
geometric coupling coefficient 0:=0.16. With increase in 
speed, the effect of 0: is to reduce t he stiffness before 
the jump and increase it beyond t he j ump. Beyond res
onance, as the presence of geomet ric coupling decreases 
the rotor displacement, higher values of 0: can provide 
stable rot or operation for higher eccentricit ies. This is 
verified in Fig. 6. 

As examining the subharmonic motion is of interest 
here, 'Poincare maps' and 'bifurcation diagrams' are use
ful tools for the purpose. T hese tools give no informa
tion on the superharmonic content of rotor motion. A 
sim ple Poincare map can be obtained by sampling the 
rotor orbit once every rotor revolution at some phase. A 
Poincare map wit h n discrete points represents a Period
n rotor mot ion i.e . the lowest frequency is l in times the 
rotor speed. A bifurcation diagram gives the qualitat ive 
changes in t he dynamics when a parameter of the rotor
dynamic system is varied. It gives the Poincare points 
for several values of a parameter such as eccentricity E . 

T he motion is Period-1 for 0: = 0.16 for reasonable 
damping values. Fig. 7 shows the bifurcation diagram 
for the parameters 0: = 0.24, GpN = 1.1 , G DN = 0.11, 
n = 1. For this set of parameters, the rotor motion 
is Period-1 for E < 0.32. For E = 0.32 - 0.35, the 
rotor motion has a large "subharmonic" content. The 
Poincare maps, shown in Fig. 8, reveal that the mo
tion is quasiperiodic as the Poincare points lie on closed 

curves. The rotor steady-state motion changes quali
tatively from periodic to quasiperiodic through a Hopf 
bifurcation which generates the frequency of amplitude 
modulation [10]. The resulting time series is shown in 
Fig. 9 and a corresponding phase-plane diagram in Fig. 
10. 

Increasing GDN reduced the amplitude of periodic 
motion, as can be seen in Fig. 11 at E = 0.45 . No 
qualitative change in the dynamics were seen for the 
parameter(E ) range where quasiperiodic motion was 
seen for G D N = O.l1. However , the rotor has aperiodic 
motion for a wider range of values of E when G DN is in
creased. When GDN is decreased, the aperiodic motion 
is still present, though for a smaller range of values of 
E. So, to reduce the quasiperiodic motion to a periodic 
one, changing GDN alone is insufficient. 

4 Conclusions 

In this paper it is demonstrated t hat pole curvature re
suIts in geometric coupling of forces. For a current con
trol system, geometric coupling reduces the stiffness be
fore the jump, when the speed is increased , and increases 
the stiffness beyond the jump . W hen the stiffness is 
small, geometric coupling causes quasiperiodic rotor mo
tion which could not be damped to a periodic motion by 
increasing the controller's differential gain. 
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