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Abstract: Magnetic bearing systems are unstable MIM01 
plants. In addition, if the levitated rotors are flexible, there 
may be poorly damped resonances of the levitated rotors. 
Advanced control is a crucial issue. System identification is 
therefore an important prerequisite for fast and reliable 
commissioning. 
Reported algorithms have difficulties to estimate the real 
unstable poles in magnetic bearing systems. Therefore a 
novel algorithm for multi variable identification has been 
developed. One of the key ideas is to identify the system 
poles from the determinant of the measured frequency 
response function matrix. 
The algorithm provides a state-space model of pre-defined 
order and structure, suited for controller design and 
verification. 
Experimental results with measured data from a magnetic 
bearing system with flexible rotor are included. 

1 Introduction 

1.1 Active Magnetic Bearings 

Active Magnetic Bearings (AMB's) [1] allow contactless 
levitation . They do not require lubrication, allow high 
circumferential velocities at high loads, do not have friction 
nor wear, and no maintainance is needed. In the domain of 
rotating machinery, they are used in an increasing number of 
high-performance applications, including high vacuum 
pumps, pipeline compressors/expanders, tool machines, and 
others . 

The force of the magnetic bearing depends on current and 
displacement in a non-linear way. This relation can be 
linearised to 

F = k;· i + ks ' y (Ll) 

The positive coefficient ks reflects a negative stiffness of 
the bearing. 
The multi variable plant considered in this 
paper consists of the (flexible) non-rotating 
rotor suspended in two magnetic bearings. 
The two radial planes are then not coupled. 
We will therefore consider only one plane. 
The considered plant is then a multivariable 
system with 2 inputs and 2 outputs (cf 

PC 

figure 1). 

1.2 Motivation and Goal 

AMB systems are unstable without control. A position 
controller is needed to stabilise the system and to provide a 
sufficient stiffness W.r.t. disturbance forces, often over a 
large frequency range. This results then in a large controller 
- and system - bandwidth. There are often eigenfrequencies 
of the rotor within the system bandwidth. If the plant model 
is not precisely known, the plant uncertainty requires 
robustness of the controller. The requirement or robustness , 
however, imposes limitations to the achievable controller 
performance. It is therefore important for reliable and fast 
controller design to have an accurate plant model for a large 
frequency range (sometimes 0 .. 3000 Hz). 
A dynamic model can also be obtained from theory (FE 
modelling of the rotor), modal analysis of the rotor, and 
static force measurements of the bearings. However, many 
effects, such as eddy currents, hysteresis, and sensor/ 
amplifier dynamics, cannot be assessed with this approach. 
Dynamic identification can provide a more accurate plant 
model, and reduce the time required for modelling and 
controller tuning. It is thus an important prerequisite for fast 
and reliable commissioning of AMB systems . 

1.3 Why Yet Another Identification Algorithm? 

Why is it necessary to reconsider the identification problem 
anew especially for AMB systems? 
The answer can be found looking at a typical pole/zero 
configuration, as shown in figure 1.2. The poles and zeros 
can be grouped in two sets : A set close to the imaginary axis 
(flexible modes) and a set on the positive and negative real 
axis (rigid body modes) . The present paper shows that 
especially for multi variable AMB identification, the set with 
the 4 real poles is very hard to estimate. None of the 

x 

I:BP Plant: 
MIMO = Multiple Input, Multiple 
Output; SISO = Single Input, Single 
Output. SIMO, MISO: Accordingly. Figure 1: Measurement set-up and context of the identification procedure. 
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Figure 1.2: Typical pole/zero configuration 

methods that we found in the literature was capable of esti
mating both rigid body modes and flexible modes robustly. 
In particular, an application of standard modal analysis 
methods is not successful. We therefore have developed a 
novel muItivariable identification method capable of coping 
with the above-mentionned plant characteristics. 

2 Plant Description and Problem Formulation 

For the sake of simplicity, the proposed identification 
algorithm, and therefore also plant description and problem 
formulation, are given for a system with two actuators 
(system inputs) and two sensors (system outputs). However, 
the algorithm can be extended to a system with more than 
two inputs and/or outputs without modification. 

2.1 Modal AMB System Description: The Theoretical 
Model 

The plant (AMB System in one plane) has the set control 

currents, i = riA iB t, at bearings A and B as inputs and 

the measured displacements, y = [YA YB r, as outputs. 

The plant's FRF ( = frequency response function) in the 

Laplace domain is defined by 

y(s)=H(s)·i(s),or 

[YA (S)] = [~I (s) ~2(S)]. [iA (s)] 
YB(S) hzI(S) hz2(S) iB(s) 

(2.1) 

The (flexible) rotor is a mass-stiffness-damper system 
(MKD system). The magnetic bearings act as a negative 
stiffness onto the rotor. This makes the rigid-body modes 
unstable and moves the corresponding poles from the origin 
onto the positive and negative real axis in the Laplace plane 
(see figure 1.2). 
Still, our plant can be described as an MKD system with 
modal damping. We can therefore use the following modal 
description: 

H(s) = <l>(MS2 +Ds+ K(,¥T (2.2) 

Let us consider m modes of the rotor, where the first two 
modes are the rigid-body modes and the higher modes are 
the flexible modes; i.e., mode 3 is the first flexible mode. 
Then, 

(2.3) 

M, K and D are the diagonal stiffness, damping, and mass 
matrices of the plant. Using mass-normalised co-ordinates, 
we can set M = I (identity matrix). 
With theoretical modelling, M, K, D, <l> and '¥ can be 
obtained from an FE model of the rotor and the parameters 
k j and ks of the magnetic bearings. <l> is a partition of the 
eigenvector matrix of the system: Its columns CPr contain 
the displacements of the r-th eigenform of the rotor 
supported in uncontrolled AMBs at the sensor locations. In 
general, <l>:;t: '¥ 2. 

2.2 Plant Parameterisations 

Various plant parameterisations will be used in the proposed 
algorithm. They are presented in this section, and relations 
between them are discussed. 
Since M, K and D are diagonal, equation (2.3) can be 
written as a sum of second-order systems: 

2 T m T 

H(s) = L 2 cP~ 1{fr 2 + L 2 2~r· 1{fr 2 
r~I S + rS - Pr r~3 S + rWOrS + WOr 

(2.4) 
with 

K = diag([ - PI 2 - P2 2 W03 2 . . . WOm 2 ]) 

D = 2· diag([dI d2 83W03 ... 8mwom ]) 
(2.5) 

d1 and d2 are small, such that the real-valued rigid-body 
poles are almost symmetrical to the imaginary axis (cj fig. 
1.2). 
Equation (2.4) can be re-written in the form 

2 R m R 
H(s) = L 2 r 2 + L 2 r 2 

r~I S + drS - Pr r~3 S + 28r wOrs + WOr 

The dyadic products 

Rr = CPr ·1{frT 

are called residual matrices. 
Further, (2.6) can be transformed to 

[
nIl (s) nI2 (s )] 

H(s) = N(s) = n21(s) nz2(S) 
d(s) d(s) 

(2.6) 

(2.7) 

(2.8) 

with a common denominator polynomial d(s) of order 2m, 
and nominator polynomials of order 2m-2. 
Last but not least, (2.2) and (2.4) can also be formulated as 

H(s) = C·(sI -AtI.B (2.9) 

with the state space description 

s ·x(s) = A ·x(s)+ B .i(S)} 

y(s)=C·x(s) 
(2.10) 

It is straight-forward to construct A, Band C from (2.2) or 

2 <l> = '¥ if sensor and actuator locations coincide ("collo
cation") and if the parameter ki of both bearings is 
equal. 



(2.4): 

(2.11) 

3 The Identification Problem 

3.1 The Goal: A State-Space Model of Order 2m 

Multivariable controller design can best be done in state 
space. A state space model of the plant is therefore needed. 
If this model is allowed to have a higher order than 
necessary, the identification algorithm will produce a model 
with a poorly observable and/or controllable part. If this part 
is unstable, the whole model becomes unstabilisable, 
although the true plant can be stabilised. To reduce the 
identified unstable model to the desired degree is then not at 
all a trivial problem. It is therefore of paramount importance 
to control the model order during the identification process. 

3.2 The Rank 1 Condition 

We use the terms "model order" and "system order" in the 
sense of the minimal order of a model's state space 
representation. 
With SISO systems, the system order is equal to to the 
degree of des) in (2.8). Unfortunately, this is not true with 
MIMO systems [7]. 
From (2.7) it follows for the residual matrices Rrin rep
resentation (2.6) of our plant that the rank condition 

rank(Rr) = 1 'IIr (3.1) 

holds. Conversely, a term 

Hr(s) = 2 Rr 2 
S + 28rOJOrs + OJOr 

is a second-order system if and only if (3.1) is satisfied, but 
it is a 4th order system if the rank of the residue matrix is 2. 
It is obvious that the rank condition (3.1) has a counterpart 
in representation (2.8). A horrible non-linear relation 
between the coefficients of all polynomials results. 

3.3 The Identification Criterion 

Let fI( s) be the FRF measured' at a number of discrete 
frequencies s = j . OJk • FRFs computed by evaluation of 
some parametric model (e.g., 2.2 or 2.9) at these frequencies 
will be denoted by H(s). 
The identification problem can be stated as follows: 

Find a state-space model of order 2m such that (2.9) 
evaluated at the measurement frequencies s = j . OJk fits 
the measured FRF data fIUOJk) in an optimal way. 

The identification performance criterion that is to be 
minimised can be defined in different ways. We have 
chosen the following relative criterion: 

J = (3.2) 

where 

eijUOJk) :: wiAjOJk)' hijUOJ~) (~h)UOJk) (3.3) 
hij jOJk 

or in matrix formulation, adopting MATLAB notation, 

J = ~IIW( OJk)· * (fI( OJk) - fI( OJk) ).jfl( OJk )11: 

(3.4) 

w( s) is a weighting function that can be used for tuning the 
algorithm. 

3.4 Some Standard Identification Algorithms 

Non-linear parameter optimisation in (2.4) Model 
(2.4) satisfies the rank 1 condition and therefore can be 
directly converted to a state-space model of correct order. 
However, the optimisation problem is strongly non-linear in 
the parameters. It converges very slowly and only if the 
starting values for the parameters are good. 

Modal analysis [5]. In modal analysis, the system poles 
are estimated with good accuracy based on the resonances of 
the FRF data. Because the poles are accurate, rank 1 residual 
matrices (dyadic products of eigenvectors) can be estimated 
after that. This procedure breaks up the large non-linear 
problem into several smaller and more tractable ones. 
However, this approach cannot cope with the real rigid-body 
poles of an AMB system. 

The Sanathanan-Koerner-Algorithm: Identification 
of the polynomial parameters in (2.8). Although this is a 
non-linear problem as well, it can be solved using an 
iterative linear Least Squares procedure proposed by 
Sanathanan and Koerner [2]. This algorithm has already 
been successfully applied to single degree-of-freedom AMB 
systems (SISO- and SIMO problem) [3,4]. The problem 
with extension to MIMO systems is that the rank 1 condition 
(or, respectively, its counterpart) appears as a crude non
linear constraint which cannot be included into the problem 
formulation in a tractable way. Therefore, the identified sys
tem will in general have order 4m if the denominator 
polynomial was assigned the correct order 2m. The FRF 
data can then be matched well with completely wrong rigid
body poles. Because the system is unstable, model reduction 
is not easily possible. 
The example shown in figure 3.1 might illustrate the 
problem. Consider an AMB system with a rigid rotor with a 
mass distribution such that it can be modelled by two mass 
points with mass m each, located at the bearing locations. In 
parameterisation (2.6) and (2.7), this system's transfer 
function is given by 

R(s) 

Both parameterisations can be simplified to 

H(')? ~l 
s -p 

(3.5) 
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In (3.5), only the fact that the residual matrix has rank 2 tells 
us that H(s) represents a fourth-order system: All individual 
transfer functions have a common second-order denomi
nator polynomial. Identification in polynomial form (2.6) 
with a second order denominator polynomial would then 
work well. It is intuitively clear that with fourth order 
polynomial and independent numerator polynomials, it 
would fail: The unnecessary pole pair would become 
arbitrarily wrong, attempting to fit measurement noise. 
However, as soon as the mass distribution is slightly 
changed, a model with fourth order nominator polynomial is 
necessary to reflect the system's behaviour correctly, 
because the double pole pair now splits. However, such a 
model represents a system of order 8. Unless the system is 
"very" different from (3.5), completely wrong poles are still 
likely to be the result of this over-parameterisation. 

4 The Novel MIMO Identification Algorithm 

The new algorithm should 
• yield a minimal state-space model 
• cope with particular pole/zero configuration of AMB 

systems (real unstable poles) 
convert the large non-linear problem into a sequence of 
tractable problems. 

To achieve this, the poles are estimated in a first step from 
the determinant of the FRF. In a second step, the residual 
matrices (2.6) are estimated. Since the poles are estimated 
well, the resulting residuals are close to rank 1 matrices. 
Their approximation by rank I matrices (which is necessary 
to reduce the system order to 2m) does therefore not 
deteriorate the model accuracy by much. 

4.1 Identification of the Poles from the Determinant of 
theFRF 

We make use of the following fact: 

det( C(sI - sAf1B) = det(R(s)) = de{ ~gj J 
= det(N(s)) = ndet(s) 

(4.1) 

(d(s))q d(s) 

In words: Let us consider a MIMO system (C, A, B) with q 
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Figure 3.1: Example plant 

inputs and q outputs (in our case: q=2). The determinant of 
the FRF of this system is a SISO polynomial fraction. The 
denominator polynomial is d(s)in power one (not power 
q!). 
The system poles can therefore be computed using the 
following algorithm: 

• Compute the determinant det( H( s)) from the 

measured FRF data. 

• Estimate the coefficients of d(s) from det(H(s)). 

Apply the iterative linear Least Squares estimation 

scheme [2,3,4], 
Compute the poles as the roots of d ( s ) . 

Reconsider the example AMB system with rigid rotor from 
section 3.4 to illustrate the idea: It is not visible from either 
of the individual transfer functions that R(s) is a 4th order 
system. However, it is clearly visible from the determinant: 

det(H(s)) = 1 2 (s2 _ p2) 

4.2 Identification of Rank 1 matrices Using SVD 

In a first step, the rank 1 constraint is neglected. Estimation 

of the elements of the rank 2 residual matrices R/2) from 

(2.6) is a linear Least Squares problem. Every Rr (2) can 
then be approximated by a rank 1 matrix using Singular
value decomposition [5,6]: 
• Decompose R (2) as R (2) = U . L . V T [6] U r and r r r r r . 

V r are orthonormal matrices with columns Ur,i' V r,i . 

Lr is diagonal and contains the singular values ar,i 

with descending magnitudes. 

• The best possible rank 1 approximation of R r (2) is 
then 

R/2 ) "" Rr = Ur,l . ar,l . vr,? = CPr . 1fI/ (4.2)3 

• Construct a state-space model of order 2m using (2.3), 
(2.5) and (2.11). 

4.3 Insertion of Proportional Feedback for 
Identification 

Sections 4.1-4.2 already describe an algorithm superior to 
those of section 3. However, the following procedure further 
improves its performance w.r.t. the real poles: 
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• Modify the measured FRF data H(s) with a 
proportional feedback matrix K, i.e., 

HK(S) = (1 + H(s). K)-l H(s) 
(4.3) 

K should be chosen such that it overcompensates the 
negative magnetic bearing stiffness. 

More precisely, (4.2) minimises the 2-norm of the ap
proximation error: 

Rr = argmin(IIRr - R/2 )11) 

= arg min( max( xT . ( Rr - Rr (2)) . x)) where Ilxll = 1 



Identify a model Ii K (s) from the modified data 

ifK(S) 
• Remove the proportional feedback from the model 

Ii K (s) to get the model Ii( s) of the true plant. 
There are two advantages of this procedure: 

• The real poles are moved to near to the imaginary axis. 
Their effect on the FRF is then more clearly visible, 
and therefore they can be identified more precisely. 

• Every controller will contain a proportional feedback 
part to overcompensate the negative AMB stiffnes. 
With the described procedure, the identified model 
becomes more accurate in the vicinity of potential 
closed-loop poles and therefore more relevant for 
predicting the closed loop performance of the 
controlled plant. 

Note that inserting or removing proportional feedback does 
not affect the system order. 

4.4 Summary of the Algorithm 

To summarise, the proposed algorithm consists of the 
following steps: 

1) Modify the measured multivariable FRF matrix with 
proportional feedback. 

2) Compute the determinant det( if K (s)) from the 

modified measured FRF data. Compute the system 

poles using the iterative lin. LS algorithm [2,3,4] . 
3) Estimate the rank 2 residual matrices associated with 

each mode (lin. LS). 
4) Approximate these by rank 1 matrices using Singular 

Value Decomposition. 
5) Construct a minimal state space plant description. 
6) Remove the proportional feedback to get back to a 

model of the original system. 
The proposed identification algorithm solves the strongly 
non-linear identification problem with a sequence of 
iterative linear Least Squares, ordinary Linear Least 
Squares, and Singular-value decomposition steps. 

5 Results with Experimental Data 

The algorithm has been tested with FRF measurement data 
from an AMB system. This AMB system is described in 
d~tail in [8]. The rot.or was highly flexible, with a heavy 
dIsk at one end. Its fIrst four eigenfrequencies were at 58, 
136, 332 and 508Hz. A photograph of this system is shown 
in figure 5.1. 

The identified model includes the two rigid-body modes and 
four flexible modes. Figure 5.2 shows the result of 
identification with the proposed identification algorithm. 
Magnitude and phase of all four transfer functions agree 
very well with the measured data. This holds for both the 
rigid body modes (low frequency range) and for the flexible 
modes, for both the resonances and the antiresonances of the 
individual transfer functions, and for both diagonal and off
diagonal transfer functions. 

.L.L 

Figure 5.1.' The AMB test stand used for verification of the 
algorithm 

6 Generalisations 

6.1 Systems With more than 2 Inputs and/or Outputs 

The algorithm can be applied to systems with more than two 
inputs and/or outputs as well. If the number of inputs equals 
the number of outputs, no change at all is necessary. If these 
numbers are not equal, a square submatrix must be used to 
determine the system poles. 

6.2 Application to Other Systems 

Standard modal analysis problem. The algorithm's 
potential can be applied to the standard modal analysis 
problem (FRF from force to displacement). 

Systems with different structure. Furthermore the 
basic idea of the algorithm is by no means restrict;d to 
systems with the structure (2.2). The estimation of the 
system poles is applicable to any type of systems. The 
complete algorithm can also be applied to systems of the 
form 

n R 
H(s) = L-r 

r=! s- Pr 

(6.1) 

(sum of first order systems), and others. 

7 Conclusions and Outlook 

A fast, reliable algorithm for multi variable identification of 
AMB systems has been developed. 
The algorithm can be a valuable tool for fast commissioning 
of AMB systems, and for increasing the achievable con
troller performance. 
AMB systems inherently have the capability to measure the 
machine's transfer functions in operation. Along with the 
presented analysis method, this could be used for on-line 
monitoring and early diagnosis of upcoming faults in 
rotating machinery. 
The presented algorithm has also the potential to solve 
identification problems with other multi variable plants. 
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Figure 5.2: Identification results. Solid: measured FRF; dashed: identified model. Note that the larger differences in the 
phase are multiples of 360 degrees. 


