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Abstract: Gyroscope with magnetically suspended rotor is 
considered in the paper. There are used two models of 
gyroscope dynamics: full and simplified. The control law is 
designed for simplified linear instrument model. Controller 
consists of observer and LQR regulator. The same control 
law is joined to the full model and simplified one. To check 
performance of the gyroscope its dynamics and 
measurement path are simulated. The results of simulation 
can be useful for gyroscope designer. 

1 Introduction 

Almost each aircraft is equipped in independent from 
external sources (satellites, radio beacons) autonomous 
system of inertial navigation (INS). Such system produces 
information about spatial orientation, speed and localisation 
of the aircraft against the Earth. INS consists of 
accelerometers, gyroscopes, and navigational computer [4]. 

The accuracy of INS operation depends on the accuracy of 
the navigational instruments: accelerometers and 
gyroscopes and of the computer algorithms calculating 
localisation and spatial orientation of the aircraft. For 
example the drift of gyroscope should be below O. 10 /h and 
measurement range up to 4000 Is. The sensitivity of 
navigational instruments with mechanically supported 
inertial masses is limited by dry friction in kinematics pairs. 
Therefore gyroscopes with electrostatically supported rotors 
were used for space navigation. Such gyroscope is sensitive 
to small angular speed and linear accelerations but its 
measurement range is limited by available low electrostatic 
forces so it can not be used in gravitational field of Earth. 

In this paper the gyroscope with magnetically suspended 
rotor is considered. In this case the physical contact of 
mechanical parts is also eliminated, what can increase the 
sensitivity of measurement. Magnetic forces are much 
higher that electrostatic ones therefore it is expected that 
such gyroscope will be properly operated in gravitational 
field of the Earth. From second hand the rotor freely 
levitates in magnetic field so its mass centre usually does 
not cover with centre of rotation. It causes that beside the 
gyro static moment there are additional moments of forces 
connected with translational motion which can introuu<.;e 
measurement errors. The influence of these moments will 
b<e studied. 

Control laws for magnetic bearings are calculated for 
simplified linear model of rotor motion. The aircraft 
angular velocity is calculated from control and 
measuremeilt signals (5]. To describe measurement error 

the full and simplified models of rotor motion are derived. 
The known step signals of angular velocity and linear 
acceleration are put into simulated simplified and full 
models and into simulated measurement paths. The 
response signals are compared with input signals to 
calculate measurement errors. The simulation is conducted 
with assumptions that measurement has been ideal (without 
noise) and that bearings have got ideal characteristics. 

2 Instrument 

The rotor of the gyroscope in the form of full or empty 
cylinder is suspended in the magnetic field by set of 
electromagnets fixed to the instrument frame as it is shown 
in Fig. 1. Rotor is put into rotation (with constant angular 
speed .0) by electric motor fixed in the middle of 
instrument. We take into consideration such instrument in 
which the axis 

Electromagnets 

z. 
Fig. I. Instrument orientation in the aircraft and co-ordinate 
systems. 

of rotor rotation covers with longitudinal axis of the 
aircraft. Gyroscope is mechanically, magnetically and 
electrically symmetric in relation to its longitudinal axis 
and to the plane which crosses the centre of gravity and is 
perpendicular to the longitudinal axis. We introduce three 
right-hand co-ordinate systems. 

1. Inertial system OoxoyoZa in which the Newton laws are 
valid. For aircraft navigational purposes we can use the 
pseudo inertIal co-ordinate system connected with Earth 
but which does not take part in her day and night 
motion. Centre 0 0 is in the middle of Earth and axis Za 
is directed to South Pole. 
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2. Co-ordinate system Oxyz is connected with aircraft 
frame. Point 0 is a geometric centre of the instrument 
case and the direction of Ox-axis is consistent with 
direction of longitudinal axis of the aircraft. 

3. Co-ordinate system OmxmYmz,n is rigidly connected with 
rotor. Point Om covers with rotor mass centre and its 
axes cover with principal axes of inertia. 

Rotor as a free body has six degree of freedom. Therefore, 
rotor motion is described by six co-ordinates: 

x, y, z - linear co-ordinates which describes linear 
movement (translational motion) of rotor mass 
centre in Oxyz co-ordinate system, 

y, ~, a - angular co-ordinates which describes angular 

r - relative displacement of mass centre, 
v - relative velocity of rotor mass centre, 
E - angular acceleration of the aircraft. 

Above equation can be expanded into the set of three scalar 
equations in the Oxyz system: 

mX = F + mg _..J a + a) , 
ex x '''\ u C x 

my = F +mg -m(a +a) +F , 
~ Y u c y ~ 

(4) 

mi = F + mg _..J a + a) + F , ez z"'\ u c z sz 

movement (rotational motion) of the rotor around where: Fex - force generated by axial electromagnets, Fey = 

. axes Ox, Oy, Oz, respectively. Fly + Fpy , Fez = Flz + Fpz - forces generated by left and right 

Above co-ordinates can be collected into one vector of radial electromagnets in the directions y and z, respectively. 

global co-ordinate system: 

(1) 

The global co-ordinates can not be used directly. It is better 
to use local co-ordinates of the rotor motion in the magnetic 
bearing planes which form the vector of local co-ordinate 
system: 

(2) 

where: y/ ,y p - linear motion of the rotor in the direction 

of axis Oy in the left and in the right bearing planes, 
respectively, 

z/, z p - linear motion of the rotor in the direction 

of axis Oz in the left and in the right bearing planes, 
respectively. 

3 Translational motion 

The measurement frame of references is the co-ordinate 
system Oxyz connected with aircraft. Translational relative 
motion of the rotor mass centre can be derived from 
Newtonian law: 

where: m - rotor mass, 
a - relative acceleration, 
g - gravity acceleration, 

(3) 

au = ao + &" x F + m x (m x r) - acceleration of translation, 

I" J" ~ 0) .. O)Y' 0). a.~Q 

I .4 ~ 
'Y 

Transformation from 
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SYS!Cm + H,,,,, H".., H= 

Transfoffilation from ...,. 
0mX..Yh system to 

Oxyzsystem '""" + H"H,..R 
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I ~ 
Fig. 2 AlgontIull of calculatiOn of left SIde of Euler's 

iie = 2m x v - Corio lis acceleration. equations. 

Fe - resultant force generated by electromagnets, 
F. - electromagnetic force generated by electric 
motor, 
co - angular velocity of aircraft, 
30 - linear acceleration of the aircraft, 

4 Rotational motion 

The rotational motion in co-ordinate system Oxyz is 
described by Euler's equations [1]: 



dHr H --+ OJ -H OJ =M +M dt z y y z r sz , 

dH 
--Y+HOJ -HOJ =M +M dt x Z Z x Y sy' (5) 

dHz H --+ OJ -HOJ =M+M dt Y x x Y z sz , 

where: Hi - components of the angular momentum 0)- -

components of aircraft angular velocity, M.i - comp~ne~ts 
of the resultant moment of forces connected with 
translational motion of the mass centre, Mi - components of 
the resultant moment of the external forces, which are: 

Mr =0, 

My = F;z ./- Fpz . p, (6) 

M =F:/ ·/-F .p z Y py. 

Forces: Fly ,Fpy , Flz , Fpz - are described below of Eq. (4) 
and 1, p - are distances between the left and right 
electromagnets, respectively and instrument geometric 
centre (by symmetry: 1= -p). 

The rotor moments of inertia are time functions in the co­
ordinate system O;ryz and they are constant in the co­
ordinate system OrnxmYmz,n.· Thus to calculate the 
components of angular momentum and next to derive the 
left side of Euler's equations the steps shown in Fig. 2 were 
undertaken. The resultant equations are as follows: 
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Eqs 4 and 7 are a set of exact full equations describing the 
rotor motion. To obtain the simplified linear equations we 
introduce the following assumptions. 



1. Shift of the inertial mass centre Om from the 
instrument geometric centre 0 is very small By this 
assumption we can uncouple the translational 
motion and rotational motion of the inertial mass. 

2. Angles a, Ii between frame of references: Oxyz, 
Ornxm..Ymz,n are smalL Thus: sina;:::;a. sin~;:::;~, cosa;:::;l. 
cos~~l. 

3. Angular speed of the rotor rotation .0 is much faster 
than other angular speeds under consideration. Thus, 
the components of angular momentum in direction 
of axes: YIlli Z,t1 are much smaller than component in 
direction of axis Xm 

The equations of rotational motion reduce to the form: 

I a+1 .o~+1 Oro a=M -1 W -1 Oro , 
Y x x x x yy x z 

1 /3-1 00.+1 .om 0= M -1 Q) +1 Oro . 
Y x x x y yz x y 

(8) 

Eqs (4) and (8) are a set of five simplified differential 
equations describing the motion of inertial mass as a free 
body. Sixth degree of freedom is connected with rotational 
motion forced by electric motor. 

5 Measurement path 

Let the inertial mass is forced by electromagnets to move in 
such a way that the co-ordinate systems : Oxyz, OmxmYmz.n 
cover each other. Then (from (4 ) and (8»: 

F"" +mgx -maox =0, 

Fey +mgy -maoy + Fsy = 0, 

Fez +mgz -maoz + Fsz = 0, 

Mx -ly w y -IxOro z = 0, 

My -ly wz +1xOro y =0. 

(9) 

Acceleration ~x can be calculated from the Eq. (9) if we 
are able to measure the force Fex and when the gravity 
acceleration is known. As it is described in [4], force Fex 
can be calculated from equation: 

(10) 

where: k ix - current stiffness, ix - control current in the coil, 
kx - displacement stiffness. In our case x=o and 
measurement of control current is sufficient to calculate 
force F ex, and thus to calculate the acceleration ~x. 

The last four equations in the set (9) are coupled by 
relations (6). The radial electromagnets generate forces 
which compensate as well the forces: FtI , Ftp generated by 

translational motion as the forces: Fd , Frp generated by 

rotational motion. Indices: 1, p refer to planes containing 
axes of the left and right radial electromagnets. Since the 
instrument is symmetric the forces are: Ftl = Ftp = F; and 

F,! = - Frp = F,.. The forces in left Fel and right Fep 

elt;ctromagnets are as follows: 

Fep = Ft - Fr' 
(11) 

All these forces are complex vectors since for example 

F:, = ~y + j. f~z' j = The forces F;, F, can be 

calculated from above relations. Fr is proportional to the 

angular speed but F; is contaminated by electromagnetic 

force generated by electric motor. Thus, the instrument can 
measure simultaneously the acceleration ax in the axial 
direction, and angular speeds coY' (iJz. Therefore, to measure 
all variable of aircraft motion there are needed three such 
instruments on the board with mutually perpendicular axes 
of rotation. 

(; System simulaHoT 

To check performance of the gyroscope its dynamics and 
measurement path were simulated in the MATLAB­
SIMULINK environment. There are used two models of 
gyroscope dynamics: fun and simplified. The control law is 
designed for simplified linear instrument model. Controller 
consists of observer and LQR regulator [3]. The same 
control law is joined to the full model and to the simplified 
one. Parameters of simulation are the same for two models, 
so we can compare the results of simulation immediately. In 
this case the detailed information due gyroscope model 
parameters and measurement path parameters is not so 
important. 

The extreme excitations are joined to the gyroscope models 
to study the gyroscope behaviour in different situations. The 
excitations are in the form of step functions as follows. 

1. Aircraft angular velocity COy was in O.Ols changed from 
00 Is up to 4000 Is. 

2. Aircraft angular velocity CO z was in 0.02s changed from 
0° Is up to 4000 Is. 

3. Aircraft linear acceleration was in 0.03s changed 
simultaneously in the direction of all axes of Oxyz 
system from Og up to 20g. 

To avoid of the differentiation of step function the change 
of the value in step is a little stretched in time. Such 
situation is much more similar to the natural one, since 
anf,'lliar velocity and linear acceleration step changes are 
not possible in aircraft performance. 

Different signals in gyroscope models and measurement 
paths caused by above excitations were recorded and 
analysed. These signals are as follows. 

1. Components My ,Mz of resultant moment of external 
forces (gyrostatic moment) in measurement pallas 
(denoted in Fig. 3 as: My, Mz). 

2. Rotor displacement in bearing planes caused by angular 
velocity step functions (denoted in Figs 3, 6 as: yr, zr, 
yrI, zrI). 



3. Rotor displacement in bearing planes caused by linear 
acceleration step function (denoted in Fig. 4 as: yu, zu). 

4. Rotor mass centre displacement in direction of axis Ox 
caused by linear acceleration step function (Fig. 5). 

5. Axial force Fx in measurement paths caused by linear 
acceleration step function (Fig. 5). 
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Fig.3. Full model answer to angular velocity step functions; 
a) measured gyrostatic moments, b) rotor displacement in 
bearing planes. 

Index 1 in above notations refers to the simplified model. 
Figs 3-5 show time signals for full model. They conform the 
proper performance of the gyroscope with magnetically 
supported rotor 
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Fig.4. Rotor displacement in bearing planes as a respose to 
linear acceleration step function. 
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Fig.5. Full model answer to linear acceleration step 
function; a) axial displacement x of rotor mass centre, b) 
axial force F". 
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Fig. 6. Rotor displacements in bearing plane for full and 
simplified models which are the answer to angular velocity 
step functions. 

As it is seen in Fig. 3 the model answer to the angular 
velocity O)y and O)z steps in 0.01 sand 0.02s. respectively is 
such as we expected. Angular velocity O)y causes impulse of 
component and steady-state value of M z. Next. the 
component causes steady-state of rotor displacement Yr 
and the component My generates a impulse of rotor 
displacement Zr. Similar cross relation are also right for 
excitation by angular velocity O)z. It should be noted, that 
linear acceleration step function which was joined to the 
input in 0.03s did not cause any noticeable changes in 
above characteristics. It confirms that the translational and 
rotational motions can be decoupled. 

Components aoy, aoz of linear acceleration step function, 
which was joined after 0.03s from the beginning of the 
simulation, generate the rotor displacements 111 

planes in the direction of the same axes: as it is 
shown in 4. 

The rotor displacement and axial force in the direction of 
axis Ox are shovvn in Fig. 5. This measurement path can be 
used to calculate the linear acceleration of the aircraft in 
this direction. To do it we need additional information 
about component of gravity acceleration in this direction. 

The components of rotor displacement in the bearing planes 
gener<lted by angular velocity steps for full and simplified 
gyroscope model was shown in Fig. 6. We can see small 
differences in the same signals only for transient motion. 
For stead-state the difference is invisible since for example 
the signal Yr = 0.16 10-5 and signal Yrl = 0.1593 10-5 so the 
difference is of order 7 10-9 . Similar results was obtained 
for other time characteristics so they are not shown here. 

7 Conclusions 

The exact full equations of rotor motion in 
gyroscope with magnetic suspension were derived in the 
paper. These equations are nonlinear and nonstationary and 
the ~.anslational and rotational rotor motions are coupled. In 
INS gyroscope the rotor motion should follow the gyroscope 

case motion. In our case this task is realised by control 
system of magnetic field. The control law were designed for 
simplified linear stationary model of gyroscope. 

Two simulation models are made for gyroscope dynamics 
and its measurement path. 

1. The control law was joined to full nonlinear, 
nonstationary gyroscope model. It is so called the full 
reference model. 

2. The control law was joined to simplified linear 
gyroscope model. It allowed to estimate the influence of 
the simplification on the exactness of the measurement 
path. 

Results of computer simulation indicate that the following 
simplifications are allowed. 

1. Translational and rotational motion can be decoupled. 

2. Additional moments of forces resulting from 
translational motion of rotor mass centre from 
instrument geometric centre are neglectfully small. 

3. Simplified model can be used to design the control law 
and measurement path. 

Nevertheless, the knowledge about simplification can be 
useful in corrections of gyroscope performance to minimise 
its drift as it takes place in the "classic" gyroscope with 
mechanically supported rotor. 
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