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AUSTRACT 
I III ~ paper is concemed with the computer-based 
Iiding mode control of flexible rotor-magnetic bearing 
\ ,~ I l: IllS (FR-MBS). The plant dynamics consisting of 

II Ilialor dynamics and flexible rotor dynamics are 
Ihcribed. The reduced order model for controller design 
I', given by eliminating higher order modes of the 
II lI 'chanical and electrical magnetic interaction system. 
\ discrete time sliding mode controller, which can 

II lkviate the chattering phenomenon happened in 
\ ,lntinuous sliding mode system, with reduced order 
\ SS observer is proposed and its robust performances 
I lIl' evaluated with several simulations based on the 
, nk ulating model.This digital controller is 
IIlIpJemented for replacing a linear analog PID 
\ " lllpensator. The levitation tests using the proposed 
dlgilal controller are done and compared with that of 
Ihe rID compensator. With discrete time sliding mode 
"l )I\ lroller the running test with high speed rotation is 
', lIccessfully increased up to 40000 rpm without 
IIlIstable vibration. 

I. INTRODUCTION 
Magnetic bearings are used in high speed rotating 
machinery with many advantages The advantages of 
lIlagnetic bearings applied to support a rotor system are 
ti S contactless nature, the capability of high speed 
rotation and active vibration control. So it is necessary 
to use an asymptotically stable and robust controller 
for magnetic bearing to support rotor systems. Now 
(he most controllers designed have been developed by 
using the linear feedback approaches[I,2]. These 
control schemes can easily accommodate the cross 
feedback capability through the utilization of the full
statefeedbackelements with observers, However, it is 
not easy to satisfy the robust performance of control 
systems using linear control low . 
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For Variable Structure Control System(VSCS), a 
discontinuous control law is obtained using sliding 
mode controller which switches when the trajectory 
crosses certain chosen hyperplane, which is called the 
sliding manifold, and reaches the origin of state space 
[3]. Recently some researches have been made for 
control of rotor-magnetic bearing systems using 
sliding mode control [4,5]. However, these references 
did not consider the flexibility of plant and the plant 
modeling used was simplified and idealized. In recent 
paper[6,7J, the design approach using sliding mode 
control was extended to the flexible rotor-magnetic 
bearing systems. However, sliding mode control based 
on a continuous system is usually implemented using 
a digital computer. The sampling interval in 
continuous systems may bring the chattering along the 
redesigned sliding mode and make the system unstable. 
Therefore, the discrete time sliding mode controller 
using a constant sampling should be used for a 
computer-based control of a practical system[8]. 
Based on the early works [6,7], this paper describes the 
design method and the implementation of the discrete 
time sliding mode controller for an actual flexible 
rotor-magnetic bearing system. First, the flexible rotor 
of continuous body based on the test rig is modelled as 
the discrete mass rotor using a finite element method. 
The state-space model governing the dynamics of the 
flexible rotor is described and the reduced order models 
which includes only the rigid modes is proposed for 
the design of controller. Then, a new design method of 
the discrete time sliding mode controller concerning 
with the extemal disturbance is presented, Finally, the 
implementation of this controller is described m 
comparison of its performance with that of 
conventional analog compensator. 

2. MODELLING OF FR-MBS 
The dynamics of the flexible-rotor magnetic , bearing 
system will be described in this chapter. For 
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simplicity, the analysis is only done in the X direction 
and all the coupling effects among the different axes 
and noncollocation are ignored. According to the test 
rig which will be described in chapter 5, the rotor can 
be taken simply into account six parts shown in 
Fig. I. 

2.1 Flexible Rotor Dynamics 
The discrete model with fourteen order IS obtained 
using finite element method as follows 

M04+Koq=0 (1) 
where 

T 
q = [x l 8l x2 82 x3 83 x4 84 x5 85 x6 86 x7 87 I 
and Xi, 8i (i = 1,. . ·,7) represent displacement and 
angle of the mass on this rotor respectively, especially, 
X3 andx5 represent the positions where the 
electromagnets are located, Mo is the mass matrix, K 0 
is the stiffness matrix. 

2.2 Actuator Dynamics 
The attractive force due to an eicctromagnet can be 
generally given by 

p=AB2=.A.. NJ.Jo+i) 2 

J.1O flo l + Xo + X 
(2) 

fl J.1O 

where P is the attractive force, J.1O is the permeability 

in the air, A is the air gap area of one pole, B is the 
magnetic flux densities, N is the number of winding 
turns, to is the steady-state current, Xo is the steady
state gap length, i is the control current, x is the 
control gap, and p is the permeability in the magnetic 
body. Using the Taylor series expansion for small 
values of i and x, we can get the following attractive 
force with linear terms 

p s Po - kl X + k2 i = Po + P (3) 
where 

k 1 = 2 A N 2 t02 2po 
----.---

fl02 ( 1. + Xo )3 J.1O (1 + ~o ) 
fl flo fl J.1O 
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Fig.l Model of flexible rotor-magnetic bearing system 
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and Po is the bias attractive force. Considering the pair 

of attractive forces, the magnetic force p' due to the 
electromagnet along the radial direction X can be 
modeled as the following equation: 

p' = PI - P2 = -2 ki X + 2 k2 i (4) 
where PI and P2 are the left and right magnet forces, 
respectively. Eq.(4) indicates that the actuator total 
forces on each direction. 

2.3 Plant Dynamics 
The flexible rotor shown in Fig. 1 is restricted by the 
attractive forces given in Eq.(4). It results 

Moii+Koq=Fp'+D (5) 
where 

F= 10 0 0 0 1 0 0 0 0 0 0 0 0 0 F 
lo 000 0 000 1 0 0 0 0 01 

, " T 
P =[Pz,Pr] 

P; = 2 ki X3 - 2 k2 iz : forces of the AJ'v1B-L 

p~ = 2klX5-2k2t,. :forcesoftheAMB-R 
and D represents the paranleter uncertainty and 
external disturbance. 
The bias attractive forces and the control forces of 
Eq.(S) are separated as follows: 

Mo ii + K q = Fi i + D (6) 
where 

i = l il ir Y K = Ko + Ki 

Ki = diag (0000 -2kI 0 0 0 -2kl 00000) 
F=r 0 0 0 0 -2k2 0 0 0 0 0 0 0 0 0 ]T 

I 1_ 0 0 0 0 0 0 0 0 -2k2 0 0 0 0 0 

Using the modal analysis technique, we can choose the 
following nonnalized modal matrix, 

q=lJf1; (7) 

Equation (6) is transformed to the form III model 
coordinate as follows: 

.. . 2 
1; + A 1; + Q 1; = .h i + d (8) 

where 

I=lJfTMlJf Q2=lJf T KlJf A=2~Q 
fi = lJf T Fi d = lJf T D 

where A is called the damping matrix. The damping 
ratio is detemnned experimentally. Ine state equation 
of the electromagnetic-mechanical system is given by 

xf=Afxf+Bfu+Df (9) 
where 
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xr= [ ~ ~ r 
[

0 I 
1\ , = 2 

- Q - A 

U = [ il . JT lr 

It Ih l: rotor displacement at the magnetic bearings can 
I ... measured, the output equation is 

y = Cf xf = [ X3 X S ]I (10) 
\\' 11 Te 

2.4 Reduced Order Model 
Iln;ause this MIMO system is originally unstable in 
IIpen loop, the control objective is to levitate the rotor 
II l1d maintain the stability. In this case, there are only 
111'0 unstable rigid modes, and the flexible modes are 
l '~ sell tially stable. It is complicated to design a 
.·"nlmller including full order models for this high 
• ,rdcr flexible system. Therefore, the construction of 
I he reduced order model is considered upon the 
~ talldpoint to stabilize the two rigid modes and to 
l"Ilntrol the vibration of flexible modes. The reduced 
I,rder model is constructed by truncation of the higher 
I,!"der modes in modal coordinates. Here, the state 
equation and the output equation including till the ith 
I .rder mode are written as follows: 

i r = Arxr + Bru + Dr 

y=Cr Xr = [ X3 xsy (11) 
where 

X r = [ ~1, ~2,"', ~i; ~~. ~~."" ~i Y 
( 'oncerning the reduced order model of Eq.(l1), the 
design of control system are done with the case which 
only the rigid modes are considered. In addition, the 
d osed loop system has to maintain the robust stability 
wi thout spillover caused by higher order modes ignored 
.hove. 

]. DISCRETE TIME SLIDING MODE 
CONTROLLER OF FR-MBS 

/\s limitation of the structure, this magnetic bearing 
system has only two output feedbacks which may be 
measured directly . Therefore, a robust variable structure 
system (VSS) observers designed in Ref. [6] is used for 
system state estimation. Considering the reduced order 
model system given in Eq.(l1), the equivalent 
discrete-time system is found as 

xr ( k + 1 ) = q'> xr ( k) + r U ( k) +d ( k ) 

[ y ( k) 1 = [ Cr ] X (k) (12) z ( k) Cp r 

where 

q'> = exp (Ar L1 ) 

r= Ai:! [ exp (Ar L1 ) - /] Br 

L1 is the sampling time, 7 is estimated state variables 

with VSS observer and Cp E R(n-l)xn. 

In this discrete time system, the following matching 
condition is guaranteed. 

d(k)=rf(k) (13) 
where 

If ( k ) I s F max 
and F max is the estimated maximum values of external 
disturbance. 
The sliding manifold is defined by 

a(k)=Sxr(k) (14) 
After the system state is driven into the sliding mode 

at the time of kiL1, using the condition of 
a( k) = a( k + 1) (k >k i ), the equivalent control 
in the sliding mode can be got as 

ueq ( k) = L Xr ( k) (15) 

where 

L=-(Srr1 s (q'>-I) 
The ideal sliding motion is then described by the 
system equation 

-1 
xr(k +1)=[q'>-T( S r) S (q'>- I)]xr(k) (16) 

S Xr (k) = 0 

3.1 Selection of Switching Manifolds 
In the first step, S must be determined for a given set 
of stable G, that means the eigenvalues of Eq.(16) 
must be lie within the unit circle. Considering the 
reduced order system shown in Eq.(12), where 
rank(Br)=m = 2 and n=4. the system equation can 
be changed into following form 

XI ( k + 1) = q'>11 XI (k ) + q'>12 xl (k ) (17) 

xl(k+ l)=q'>21XI (k)+CP22xl(k )+r2u(k)+ r liCk) 
(18) 

where 

q'>= 

x)ERn-m,xlER m, r 2 is mxm nonsingular matrix 

and q'>11 is (n-m)x(n-m) matrix. For the switching 
hyperplane defined in Eq.(14), it is transformed to 
a ( k) = S xr ( k) =SI x:( k ) + S2 x;( k) (19) 

where S 2 is a non-singular mxm matrix. Assuming 
the system is in the sliding mode, Eq.(19) yields 

xl ( k ) = -S 21 SIX I ( k ) = F X I ( k) (20) 

so that the evolution of xl in the sliding mode is 

related linearly to that of x). The sliding mode is 
governed by Eq.(17) and Eq.(20). This is an (n-m)th 

order system in which xl holds the role of a full-state 
feedback control system. Closing the loop in Eq.(17) 
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with the feedback from Eq.(20) 

XI ( k + 1 ) = ( <P11 + <P12 F) XI ( k) (21) 
so that the design of a stable sliding mode ensuring 

Xr -0 as t _00 requires to choose the (n-m) closed
loop eigenvalues of Eq.(21) to lie within the unit 
circle. These eigenvalues correspond to the (n-m) 
non-zero eigenvalues of the equivalent system. The 
process can be achieved by using a modified form of 
any standard design method giving a linear feedback 
controller for a linear dynamical system. The method 
which is considered in this paper is that based on the 
minimization of an integral cost functional with 
quadratic integrand which was discussed in Ref. [6]. 

3.2 Design of Controller 
After the design of switching swiace, the next 
important aspect of variable structure system is 
guaranteeing the existence of sliding mode. The 
variable structure system can be thought of as a closed
loop system with an adaptively varying state feedback 
gain. Therefore, the type of control law considered 
here consists of two independent functions: a linear 
state feedback control function UL and non-linear 
control function UND 

U ( k ) = uL ( k ) + UNL ( k ) (22) 
where 

UL ( k) = L Xr ( k) 
and L is given in Eq.(15). UNL IS discontinuous 
control law which can be defined by 

Fig.2 Testing apparatus of magnetic bearing 

Fig.3 Experimental setup for digital control 

UNL = - [ a ( k ) + f3 ( k ) ] sgn ( a ( k » (23) 
where 

_ Ila(k)11 ') 
a ( k ) -111SrT 0 < 1] < ..., , f3 ( k ) ~ F max 

It can be proved that the control law selected here 
guarantees the existence condition of sliding mode. 

4. EXPERIMENTAL RESULTS 
The test rig of the magnetic bearing system under 
consideration is shown in Fig.2. A induction motor 
rotor is located in the middle of the shaft and two radial 
magnetic bearings are located on both sides of the 
motor rotor. A thrust magnetic bearing is located at 
left end of the shaft. The radial magnetic bearings 
together control two rotational and two translational 
degrees of freedom. The thrust magnetic bearing 
controls the displacement in the axial direction. Eddy 
current type proximity sensors are set up for the radial 
magnetic bearings at both sides of the bearings, but 
inner sensors are used in tests. The natural freqnencies 
of the first two bending modes measured in an impulse 
experiment were determined to be 340 Hz and 
780 Hz, respectively. 
The block diagram of the control system implemented 
digitally is shown in Fig.3. A digital signal processor 
TMS320C30 with the high-speed AID converter and 
DI A converter is used to accomplish digital control and 
to transfer of data between the a host personal 
computer and test rig. The sampling time in 
experiments is selected to 0.4 ms because it is not 
necessary to take a small sampling rate like 
continuous system. In fact, the computation time for 
the control algorithm was less than 0.1 ms. 
Therefore, the proposed discrete time sliding mode 
controller is expanded to control two directions 
(x and y) simultaneously. Other controller parameters 
are the same as those used for simulations. 
In this experimental set up, a linear analog 
compensator was also applied in each axis based on the 
models ignoring the coupling effects among various 
axes. we can choose the control system by either the 
linear analog compensator, or the discrete time sliding 
mode controller designed.The compensator circuit is 
made up of an integration circuit to increase static 
rigidity, a phase lead circuit to increase the damping 
force of the rotor in the intermediate frequency range 
and a low pass filter to attenuate the gain in high 
frequency range. 
Figure 4 shows the typical time history response of 
the discrete time sliding mode control system at the lift 
off. The time history response of the analog 
compensator in same posItion is presented in Fig.5. 
The time history response of the sliding mode 

I 
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controller shows that it takes about 80 ms to reach 
the steady-state position whereas the analog controller 
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takes over 200 ms with a big overshoot. Figure 6 
gives the impulse responses of the sliding mode 
control when the disturbance is added at the right end of 
the rotor. This impulse response indicates an excellent 
performance considering that the controller was 
designed using only rigid mode. The control current 
to realize this response is also shown in that same 
figure. It can be also found that the experimental data 
have good agreement with the simulation results. 
Considering the robustness of sliding mode controller, 
Figure 7 and Figure 8 show respectively the time 
history responses and the impulse response in the case 
of the increment of the rotor mass to 50% of the 
nominal value by loading a mass at the right end of 
rotor. It can be seen that the system is still stable to be 
suspended and the discrete time sliding mode controller 
designed has superior performances to eliminate 
disturbances and to maintain the low sensitivity for 
the system parameter variation. It is not easy for 
conventional analog compensator to realize the similar 
good performance. 
Next, we would give the results of rotating test with 
sliding mode controller for this test rig. Figure 9 
shows the waveform of control current and shaft 
vibration of x-direction at first bending critical 
speed(20,000rpm). In this figure, the control current 
made by discrete time sliding mode controller has the 
same period as the shaft vibration. We can also find the 
shaft vibration has the very small magnitude though 
the shaft is rotated under first bending mode. For 
showing the shaft vibration of xy-direction in same 
time, Figure 10 gives the orbit plot of shaft centre at 
position X3 under rigid mode(8,000rpm) and first 
bending mode(20,000rpm). It is shown from this 
figure that the vibration magnitude in rigid mode is 
larger than that of first bending mode, but the spillover 
phenomena, which is caused by ignored higher order 
modes, can not be found in both cases. Finally, a 
waterfall diagram of shaft vibration in the rotation test 
is attained as shown in Fig. 11. With discrete time 
sliding mode controller the rotating test was 
successfully rotated up to 40000 rpm without unstable 
vibration in this case. As the result the vibration 
frequency of shaft is proportional to the rotating speed 
in whole frequency ranges, and the vibration response 
is fully damped even at the rigid and first bending 
critical speed. 

5. CONCLUSIONS 
This paper have developed the active vibration control 
system for the actual flexible rotor-magnetic bearing 
systems by considering the instability, nonlinearity 
and flexibility of the plant. Using finite element 
method, the state space model for the full order system 

of the flexible rotor is derived. The plant dynamics 
including the actuator dynamics and the flexible rotor 
are described. The discrete time sliding mode controller 
using the reduced order model of plant, which can 
control effectively the full order system with 
robustness to the spillover phenomena of the higher 
order modes, have been designed for active control of 
magnetic bearing systems. The new discrete time VSS 
observer and the simple algorithm for digital controller 
design are proposed. It is have shown that this 
controller can alleviate the chattering phenomenon 
happened in continuous sliding mode system. This 
controller is implemented as an alternative to a 
conventional linear analog PID compensator. The 
comparisons between results of the discrete time 
sliding mode controller and the analog PID 
compensator, which is carried out in levitation tests, 
indicated that the digital controller has superior 
dynamic response properties and robustness for the 
system parameter uncertainty, nonlinear factors and 
external disturbances.With discrete time sliding mode 
controller the rotating test is successfully increased up 
to 40000 rpm without unstable vibration like 
chattering, which indicated that the vibration responses 
are fully damped even at the rigid and first bending 
critical speed. 
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