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ABSTRACT 
I' li ' re is discussed robustness of the stabilizing system 
III I he rotating shaft magnetic suspension holding one 
,1\ 1:11 and two radial magnetic bearings. With respect to 
I Ii ' criterion for obtaining a region of maximum 
il l I raction of stabilizable equilibrium state in the phase 
·.p:1 e (shaft rotation not regarded), there has been 
w il ihesized an algorithm to regulate voltages on the 
',lIspension electromagnets. 
III it, its basic features of robustness are examined 
1'('1 SIIS variance of parameters and nonlinear 
, lilll'acteristics of the stabilizing system. For a 
lion linear case, some family of control functions 
" 111.~ rying a specified criterion is revealed. For a linear 

, . I ~ , " we have found a possibility to assign an interval 
" I parameters and a feasibility to vary regulator's 
.[llIctllre. 
111\; stabilizing system implementing the above 

1I 1)"llri thm is shown to possess properties of robustness. 
h ll Ihe case of shaft not rotating, the above criterion 
lI ' I IIII1S valid provided the nonlinear control functions 
II ' III:li n in the Hurwitz angle. Under the algorithm, the 
IlIlcarized stabilizing system also retains stable both in 
I hr case when regulator's structure varies because of 
• " ors in the speed correction of shaft departure sensor 

11',lIa is and at shaft rotation speeds assigned from zero 
III nominal. 

INTRODUCTION 
present, there has become widely 

11 ', rd a magnetic shaft suspension fabricated in the 
111' "1 of one axial and two radial magnetic 
I" . 11 iugs [I). When there is a good degree of 
It ()upling between the fluxes, electromagnetic forces 

in the channels of axial and radial shaft stabilization 
systems can be considered independent inthemutually 
perpendicular planes. 
In our case, conductive and elastic properties of 
construction elements were also assumed to be 
neglected and the material of magnetic suspension 
nonsaturated, in ,/ all the operating modes of the 
suspension. These assumptions as we1l as a due regard 
of instability of object under control and a limited 
nature of control voltages on suspension electromagnets 
make it possible to employ general principles of 
constructing control algorithms described in Ref. [2]. 
On the basis of these principles [3,4], we have 
synthesized robust . control algorithms for axial and 
radial stabilization of a nonrotating shaft. As far as in 
a1l these cases, in the capacity of a synthesizing 
criterion there was chosen a condition of attaining the 
maximum region of attraction of stabilizable 
equilibrium state in the phase space of the system, 
robustness of synthesized algorithms is shown by us 
with respect to initial conditions of a nonlinear 
stabilization system. 
This study mainly aims at observing robustness of the 
algorithm (synthesized in Ref. [4] ) for shaft radial 
stabilization with respect to variance of parameters and 
nonlinear characteristics of the system, Such statement 
of the problem is considered interesting from the point 
of view of engineering imlpementation of the 
synthesized algorithm; in this implementation such 
variance is inevitable. Besides, specificity of radial 
stabilization of the shaft lies in the fact that it should be 
effected at shaft rotation speeds varying within a wide 
range, from zero to nominal. And, disirably, without 
reconstructing the control algorithm ( in [I] this 
reconstruction exists) . Such reconstruction - free 

I I Ii, ~ research has been done under support from the Russian Fund of Fundamental Studies. 
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FIGURE 1: The shaft departure under action of forces 
from the side of radial magnetic bearing 

electromagnets. 

approach we conco~sider essential since a use of 
magnetic suspension in the shaft usually presupposes a 
necessity of its st'arting acceleration to very great 
rotation speeds not obtainable when ordinary 
mechanical bearings employed. 

MA THEMA TICAL 
STABILISATION 

MODEL OF 

With due regard of above assumptions, a mathematical 
model for the electromechanical system of the type 
"shaft-radial electromagnet bearings (SREB)" at 
linearized force characteristics of pairs (/1 - f3 h -/4, 
Is - 17, /6 - Is ) of electromagnets (diametrically 

opposed relative to the shaft, as shown in Fig. 1 ) can be 
represented in the dimensionless standard form 

; =A . x + B· u, (1) 

where nonzero elements of matrices A ( 12 * 12 ) 
and B ( 12 * 4) will be 

01,2 = 04,5 = 07,S = 010,11 = 1, 

02,1 = - 02,3 = 05,4 = - 05,6 = 0&,7 = - a8,9 = 

= all, 10 = - ° ll, 12 = ( 1 + u ) I 2, 

°2,4 = - 02,6 = as,1 = - 05,3 = 08,10 = 
= - 0S,12 = ° ll, 7 = - ° ll, 9 = ( 1 - u ) 1 2, 

°2,S=-a2,11 =-oS,S=05,11 =-oS,2= 

= oS,S = 011,2 = -011,5 = - H 12, 

a3 2 = 06 5 = 09 & = 012 11 = hiT, , , , , 
033 = a6 6 = a9 9 = 01212 = - 1 IT, , , , , 
b3 1 = b6 2 = b9 3 = b 124 = 11 T, , , , , 

where dimensionless variables 

Xl = (81 - 83 ) / 8m, x2 =;1 . tm , 

x3 = (11 -13) /lm,.X4 = (82 - 84) / om, 
Xs =;4' tm, x6 = (12 -14) /lm, 

x7 = ( 05 -~ ) / am, Xs = h . tm, 

x9 = (IS - 17) /lm, xlO = ( 06 - 0& ) / Om, 

xll =;10' tm, x12 = (16 -1&) /lm, 

ul = (uel - ue3 ) I urn' u2 = (ue2 - ue4) / urn, 

u3 = ( ueS - ue7) / urn, u4 = ( ue6 - ue8 ) / urn 

are employed. These variables are expressed via 
variance of gaps OJ in the directions of forces specified 

in Fig. 1, through variance of currents 1j and voltages 

Uj of the related electromagnets (j = 1 - 8) and also 

via the accepted scales of variables 

The dimensionless parameters (1) describe the 
following: 

u = m . [2 / 4 . J -geometry of the shaft and its mass 
distribution (for a cilinder isotropic shaft we take 
u = 3); 

H = Jo . n . tm / J - kinetic momentum of the shaft; 

h = b2 / ° . R . tm - selfdamping of magnetic bearings; 

and T = L I R . tm - a time constant of the 

electromagnet. 
These dimensionless parameters were expressed via 
dimension parameters of the shaft: m - mass; [ -length; 
J o,J - axial and transversal inertia moments; n-speed 

of rotation. Parameters of indentical electromagnets 
were taken as follows: a,b - slopes of force 
characteristics at variance of gaps and currents; L, R -
inductance and effective resistance. 
If the shaft has no axial rotation (H = 0 ), the system 
of equations ( 1 ) is broken in two independent 
subsystems corresponding to shaft motions within two 
mutually orthogonal planes of radial bearings. 
The algorithm for regulating voltages on 
electromagnets in. radial bearings has been created 
[4] for each of these subsystems on the basic of the 
criterion of maximum region of attraction of 
stabilizable eqUilibrium state in the state space of the 
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'1II';pension, under specified constraints u+ for control 
JI lions and assumption of complete observability ofthe 
t.\ll'ct under control. 

ROBUSTNESS OF THE SUGGESTED 
ACGORITHM 
II Isic features of robustness in the suggested algorithm 
wllh respect to variance of parameters and nonlinear 
l haracteristics of the stabilizing system are studied 
wi th regard of particularities of this algorithm. These 
p.lllicularities lie in variance of regulator structure 
I fl used by dynamic errors in real differential section of 
I he sensor signals. With regard of these errors, the 
Irgulator, implementing the algorithm [4], is described 
by below nonlinear equations 

1:1 -= (xl + x4 - YI ) /& . 'ti + (x2 + x5 ) I s, 

1'2 C (xl - x4 - Y2 ) Is· 't2 + (x2 - x5 ) I s, 

1;\ == (x7 +xlO - Y3) Is· 'ti + (x8 +xll) Is, 

II:, = (x7 - xlO -Y4 ) I s ·'t2 + (x8 - xU) 18, 

( y 1 2 = T . ( k" 1 2 . Y 1 2 - ( x3 ± x6 ) ), (2) . ,. 

f u+, P . ( 0'1 ± 0'2 ) ~ u+, 

"1 ,2 = P ' (0'1±0'2), -u-~P ' (O'I±0'2)~u+, 

l -u- - u- ~ P . ( 0' 1 ± 0'2 ), 

CJ3,4 = T· (k"1,2 . Y3,4 - (x9 ± xl2 ) ), 

r u+, P . ( 0'3 ± 0'4 ) ~ u+, 

" 3,4 =, P . ( 0'3 ± 0'4), - u- ::: P . ( 0'3 ± 0'4 ) ~ u+, 

L -u- , - u- ~ P . ( 0'3 ± 0'4 ), 

where the upper sign relates to the first of underindices 
written through a comma, and the low to the second; 
; lIId 8 < 1 denotes the parameter describing an error of 
speed correction of departure sensor signals. 
According to [ 4 ], optimal parameters of the regulator 
( 2 ) in the shaft radial stabilization system have the 
below analytical expressions: 

... 
f: ==0, 

... P > 0.5, 
1\* ~ 

k 1,2==(T·AI,2+1)IT·II.I,2, 

T'4< 1,2 = AI,2 -1 - h I ( T . Al,2 + 1 ) , 

(3) 

(4) 

(5) 

(6) 

where for H = 0 and small h the positive roots of 
characteristic equation for the noncontrollable object 
( 1) wiil be approximately to 

(7) 
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FIGURE 2: A family of nonlinear control functions 
satisfying a criterion of maximal attraction region. 

In the given case, the robustness with respect to 
nonlinear characteristics of the regulator is assigned via 
the condition (4) from which it follows that all 
piecewise-linear functions located in the Hurwitz angle 
will (as shown in Fig.2 ) provide not only stability but 
also a maximum region of attraction of the stabilizable 
equilibrium state in the state space of the system, the 
shaft not rotating. 
Robustness with respect to variance of stabilizing 
system parameters is observed through studying its 
stability by the D - decomposition method [ 5 ] in 
the plane of the most essential parameters: 
a) ki - 1, 'ti that characterize stiffness and damping of 

magnetic bearings at translational departures of the 
shaft, and 
b) H, k2 - 1 that characterize a speed of shaft rotation 

and stiffness of magnetic bearings, at angle departures 
of the shaft. All the other parameters of the stabilizing 
system are assumed to be fixed on their optimal values 
or to be near to real. 
StUdying stability is effected on the basis of 
characteristic equations of the closed-loop system (1), 
(2). The equations can be represented as a product of 
the below three characteristic polynomials: 

The first two similar characteristic equations 

Xl ( A) = [ ( A2 - 1 ) . ( ~ . T· A + 1 ) + ~ . h . A] . 

. (8 'TI' A+ 1 )+kI' (TI' A+ 1 )=0 (8) 
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FIGURE 3: Performing the D-decomposition of the 
parameter plane "Stiffness - damping translative 

shaft departures" at the following fixed 
parameters of stabilizing system in active magnetic 

bearings: h = 0.4; T= 2; Il = 0.09; g = 0.1. 

describe stability of the stabilizing system in the 
magnetic suspension in the course of translational 
departures of the shaft in two mutually perpendicular 
planes. These equations, if parameters properly chosen, 
describe an axial stabilization system as well. The third 
equation 

X2( A ) = { [ (AL u ) . ( J.l" T· A + 1) + u . Il' h . A] . 

. ( g • 't2 . A + 1 ) + U . k2 . ( 't2 . A + 1 ) }2 + 

+ { H . A . ( Il . T· A + 1 ) . ( g • 't2 . A + 1 ) }2 = 0 (9) 

describes stability of radial stabilization system for a 
rotating shaft during its motion through angles 81, 

e2. The parameters Il = (-1 + p. Ttl« 1 and 

k 1,2 = = Il . P . T . It 1,2 in (8), (9) represent a 

combination of initial parameters caused by the 
electromagnet current feedback available in the 
synthesized regulator. 
The region of system stability in the parameter plane 
kl - 1, 't} (stiffness-translational departures damping) 

is shown in Fig.3. This region boundary related to 
stability loss at zero frequency is a special straight line 
of the D-decomposition k} - } = 0 (co = 0, a single 

dashing), For a general case (denoted by double 

dashing), a stability region boundary for 0 :S co 2 :s co*2 

is assigned parametrically, as follows: 

-4 o HO 4 

FIGURE 4: Performing the D-decomposition of 
the parameter plane "Shaft's kinetic momentum
angular stiffness"at the foIlO\..,i.ng fixed parameters 

of a stabilizing system in active magnetic 
bearings: u = 3; h = 0.4; T= 2; Il = 0.09; & = 0.1. To 

the shaft's nominal rotation speed 
roO = 60000 rev! min there corresponds 

dimensionless value of the kinetic momentum 

HO = 0.7 (JO = 1.1" 10-4 kgm2;J= 4.1' 10-3 kgm2, 

tm = 3 . 10-3 sec) . 

kl = ( 1 - Il . T· s . 't . co2 ) . ( 1 + 6)2 ) + 

+ Il . h . g . 't . 0)2 

( 1 - & ) . ( } + 0)2 ) ± ~ DS 

'tl = 

2 . g . 002 . [ Il . T· ( } + ro2 ) - Il . h ] 

DS = (1 - g )2 . ( 1 + 002 )2 - 4 . & • 002 . 112 . 

. [T ' ( 1 + co)-h]2 ~ ° 

(10) 

The limit frequency of a stability loss (this frequency 
describes a limit stiffness of a magnetic bearing) is 
determined through the condition DS = 0, and at 
small selfdamping ( h « 1 ) it wiil be approximately 
similated in the following way 

(11) 

Optimal parameters of the synthesized regulator (4), 
(5) fall into the stability region and in Fig.3 are 
designated by a circled point. Admissible departures of 
parameters from optimal ones are declared through 
stability region boundaries though, as shown in [6], at 
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.I11;lIler departures the region of attraction of the 
·. l.lh ilizable equilibrium state in the state space is 
I rdllced. 
I'll ' system stability region in the parameter 
pl :llle H, k2 - 1 ( kinetic momentum of the shaft-

.1IIJ;lIlar stiffness of the magnetic bearings) is shown 
III rig.4. Its boundary, on which at zero frequency 
I II ' re occurs a stability loss, will be a special 
/.1 raight line of the D - decomposition 
" - 1 = 0 ( 0) = 0, a double dashing). For the general 

( :I ~e (double dashing), a stability region boundary 

f). 1J) 2 < 0).2 as follows 

U 'J.l' h . ( 1 + g . '22 . 0)2 ) 

,, = [ ------------ + 

'2 . ( 1 - g ) - J.l . T · ( 1 + g2 . '22 . 0)2 ) 

/(1) 2 + \) ] I 0) 

k2 = - --------------

'2 . ( 1 - g ) - J..l • T· ( 1 + g2 . '22 . 0)2 ) 

(12) 

1\ range for admissible shaft rotation speeds is 
determined through points where the boundary (12) 

intersects with the straight line k2 = k2'" . If a needed 

operating range of shaft rotations exceeds an obtained 
estimate, then system parameters have to be modified 
in the way as to make the stability region in Fig.4 
extending. To this lead, in particular, a reduction of 
onstant time ( T) of electromagnets and that of errors 

of speed correction ( g ), that define regulator's error 
and limit capabilities of magnetic bearings in stiffness 
and in admissible rotation speeds of the shaft. 

CONCLUSION 
This study has reveale4 that suggested algorithm 
[ 4 ] for regulating voltages on electromagnets in radial 
magnetic bearings ensures not only maximum region 
of attraction of stabilizable equilibrium state in the 
state space but also satisfies properties of robustness 
with respect to variance of parameters and nonlinear 
characteristics within the stabilizing system. In 
contrast to the algorithm in Ref.[ 1], our reconstruction
free algorithm is capable of ensuring a suspension 
stability without reconstructing the suspension within 
the entire range of shaft rotation speeds. The software 
developed makes it possible to calculate estimates of 
admissible stiffness for magnetic bearings and of shaft 
rotation speeds in accordance with a choice of 
remaining parameters of the system. 
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