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I\ I\ST RACT 
As a new rotor control scheme, isotropic control of 

11\' :lk Iy anisotropic rotor bearing system in complex 
.101 1' space is proposed, which utilizes the concepts on 
Iii,' cigenstructure of the isotropic rotor system. 
l\ d\,: lIllages of the proposed method are that the 
'"l lrolled system always retains isotropic eigen

,I I li t" I life, leading to circular whirling due to unbalance 
Il ld Ihal it is efficient for control of unbalance response. 

lid I he system analysis and controller design becomes 
IlI lJl k and yet comprehensive since the order of the 

III III ices treated in the complex domain approach is 
hli ll of that in the real approach. 

The control scheme is applied to a rigid rotor-active 
III'r.lld ic bearing system which is controlled by a 
111/,.11 :11 controller and the control performance is 
1111 1'!'>1 igated experimentally in relation to unbalance 
I, ',pu llse and control energy. 

IN'mODUCTION 
( 'omplex notation has been commonly adopted in 

1I , lI ll1l1ic analysis of a rotor bearing system due to the 
I "111 1 iona l convenience and clear physical 

111 1'1 prelation, and the dynamic analysis[1,2] and 
I " tllln i of isotropic rotor bearing system[3,4] in 
1II II Ipkx space has been well developed. In this work, 
III 1'o(l ii Opic optimal control of anisotropic rotor bearing 
\ II ' III in complex state space is proposed, which 
II III's Ihe concepts on the eigenstructure of the 
I 1IIIilpie rotor system[5]. Isotropic optimal controller 
II, 11',11 in complex state space[6] is essentially 

IJ lH jlnscd of two steps. Firstly system is decomposed 
illll isol ropic and anisotropic parts, and direct 

I 1111 d lllg control of the system anisotropy is 
101 II 1111ICd. Secondly an isotropic control scheme such 

as the optimal control in complex domain is applied to 
the resulting isotropic system[3] . 

The proposed control method is applied to the 
control of rigid rotor-active magnetic bearing(AMB) 
which is controlled by a digital controller and the 
control performance is investigated experimentally in 
relation to unbalance response and control energy. It is 
shown that the proposed method is efficient for control 
of unbalance response. 

Advantages of the proposed method are that the 
controlled system retains isotropic eigenstructure, 
leading to circular whirling due to unbalance[l] and 
that the system analysis and controller design becomes 
simple and yet comprehensive[6]. 

CONTROL OF ROTOR BEARING SYSTEM 

Modeling of Rotor Bearing System 
The equation of motion of a muIti-degree-of

freedom rotor bearing system, such as rigid rotor-AMB 
system shown in FIGURE 1, may be written as 

Mij+Oj + Kq = f 

where 

q={~}. f={l} 

(1) 

1My'yMyzl ICy'ycyzl 1Ky'yKyzl 
M=lMzy MzzJC=lczy czzJK=lKzy KzzJ 

Here M, C, K are the 2n x 2n mass, damping including 
gyroscopic effect, and stiffness matrices, and y (z) and 
fy ifz) are the n-dimensional y-(z-) directional 
displacement and force vectors. 

Assuming that the rotor is axisymmetric and 
introducing complex notations such that p = y + jz and 
g = fy + jfz, we can rewrite Eq.(1) as 
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BRG-I BRG-2 

FIGURE 1 : Rigid Rotor-AMB System Model 

(2) 

where 
Me =Myy =Mzz , Myz=Mzy=O 

Kyy+Kzz .Kzy-Kyz 
K = +J 

e 2 2 
Kyy - K zz . K zy + Kyz 

KI!. = + J 
2 2 

(3) 

Cyy+Czz .Czy-Cyz 
C = +J 

e 2 2 
Cyy -Czz . Czy +Cyz 

CI!. = +J 
2 2 

Here j is the imaginary number and '-' denotes the 
complex conjugate. In Eq.(2), the nx n complex 
matrices Me' Cc' Kc represent the isotropic properties 
of the rotor bearing system whereas the n x n complex 
matrices C!1, K!1 represent the anisotropic properties of 
bearings. 

Conventional Optimal Control 
The state space form of Eq.(l) can be written, on 

the assumption of the positive definiteness of mass 
matrixM, as 

x=Ax+Bu 

where 

A={_:lK _:-lC} B=[:_l} 
x = {:}, u = I = {~ }. 

(4) 

Here A is the real valued 4n x 4n system matrix and x is 
the 4nx 1 state vector. Consider the quadratic 
performance index given by 

100 T T 
J= 0 (x Qx+u Ru)dt (5) 

where Q and R are the positive semidefinite and 
positive definite weighting matrices, respectively. Then 

the solution to minimization of J is the optimal control 
law given by 

-1 T u=-R B Px (6) 

where P is the solution of the algebraic matrix Riccati 
equation 

PA+A T P_PBR-1BT P+Q = O. (7) 

Here the positive definite solution matrix P always 
exists and the controlled system is asymptotically 
stable, if [A,B] is controllable and [A,D] is completely 
observable, where D is any matrix such that DDT = Q 
[7]. As the result, optimal control gain matrix, Kopt, 
can be written as 

[ ] -I T 
Kopt = Kpo Kdo =R B P (8) 

where Kpo and Kdo are the proportional and derivative 
gain matrices. From Eqs.(6) and (8), control force 
vector can be written using the feedback gain matrices 
as 

(9) 

Substituting Eq.(9) into Eq.(I), we can write the 
controlled system as 

Mq+[C+Kdo]q+[K+Kpo]q= Ie (10) 

wherele is the external force vector. 
In general, conventional optimal controlled rotor 

bearing system (10) in real domain retains the 
characteristics of uncontrolled system. Therefore if the 
original system is anisotropic, controlled system is also 
likely to be anisotropic, leading to the elliptic whirling 
due to unbalance. 

Isotrollic Olltimal Control in Complex State Space 
The essence of the isotropic optimal control of rotor 

bearing system in complex domain is that the control 
effort is twofold. The first part of control action is 
solely devoted to make the system isotropic and then 
the second part of control action is applied to the 
resulting isotropic system, which utilizes an optimal 
control in complex domain. Complex control force g in 
Eq.(2) can be decomposed into two parts as 

g= gc +gl'l (11) 

where 

gl'l =CI'lP+KI'lP (12) 

Here gc is determined from the equation of motion 
associated with the isotropic system resulting from the 
control action of g~, i.e. 

(13) 
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IIId then the optimal controller in complex state space 
I ~ 10 be designed. 

The state space form of Eq.(13) is 

Xc = Acxc + Bcuc 

where 

[" ° 11 [01 
Ac =l-M;l K -M;IC J Bc = M;l J 

Xc ={~}.uc =gc 

(14) 

Ilere Ac is the 2n x 2n complex system matrix and Xc is 
I he 2n x 1 complex state vector. Consider the quadratic 
p 'rformance index in complex domain given by 

(15) 

where Qc and Rc are the positive semidefinite and 
I'o~itive definite Hermitian matrices, respectively, and 
,+, denotes the conjugate transpose. Then the solution to 
Illilli mization of Jc is the complex optimal control law 
I ~ iven by 

(16) 

where the positive definite Hermitian matrix Pc is the 
o,ollllion of the complex valued algebraic Riccati 
'qll:Jlion 

• I • PcAc + AcPc -PcBcR~ BcPc +Qc = 0. (17) 

I.' rom Eq.(16), the complex control force vector 
I 'comes, using feedback gain matrices, 

gc=uc= -{K pcP+ KdcP} (18) 

II lId the final control law is the superposition of the two 
. lIll rol actions given in Eqs. (12) and (18), Le. 

g= gc +gt:, 

= -{Kpcp +CdCp} + {Kt:,p + Ct:, p} 
rhe controlled system becomes then 

(19) 

M cp+[Cc + Kdc]P+[ Kc + Kpc]P= ge (20) 

where ge is the external force. 
Unlike the conventional optimal control, the 

I'.olropic optimal control ensures that the controlled 
~ \' li l em remains always isotropic. Since the order of the 
lIIulrices treated in the complex domain approach is 
It Ilf of that in the real approach, the system analysis 
Illd controller design is far simpler and more 
'Il lllprehensive. In practical application of this control 
, 'heme, however, some cautions are necessary for good 
I' 'rformance such that the total control gain matrix in 
I 'II I domain must be at least positive semidefinite, if 

not, some control energy may be consumed to degrade 
the control performance. 

CONTROL OF RIGID ROTOR-AMB SYSTEM 
The equation of motion for an axisymmetric rigid 

rotor-active magnetic bearing system shown in 
FIGURE 1 can be written, using complex notations, as 

McjJ+Ccp+ Kcp+ Kt:,p= K;i+ge (21) 

where 
[" [2 . II . 1 

M =l m 2 +Id m I 2 -Id J 
c II . 12 . m I 2 -Id m I +Id 

and 

Cc= -jnip[~1 ~1] 
Kc =[ K~o ~J K~ =[ K~~ K:J 

. =[Kil 0] 
K, 0 K;2 

q ={;; :~;:}. i = {:;; : ~~::}. ge =n2{:~} 

id =X2' ip=~. 
II=/(' 12=b~ . bl=bI+b2 

1 1 
KJO=-(KyI+KzI)' KI~ =-(KyI-KzI ) 

2 2 
1 1 

K20 = -(Ky2 +Kz2 )' K2~ = -(Ky2 -Kz2 ) 
2 2 

Here m, ld and lp denote the mass, the diametrical and 
the polar mass moment of inertia of the rotor 
respectively, b 1 and b2 are the distances of two 
magnetic bearings from the mass center of the rotor, n 
is the rotating speed of the rotor, KiJ and Ki2 are the 
current stiffnesses of magnetic bearings, Kq and iq are 
the negative stiffness of the uncontrolled magnetic 
bearings and the control current of each magnet, 
respectively, and g. is the unbalance force due to mass 
unbalances OfUI and U2 in AMB 1 and 2. 

Note that the open loop system (21) is inherently 
unstable by the negative stiffness Kq which is generated 
by attractive magnetic force so that the stabilization 
control is always required, i.e .. 

/q=-Kqq+K;/q . q=YI'Y2.zl.z2 (22) 

where 

apo N 2 AUql +Iq2 ) capoN 2 AUJI +IJ2) 
K; 2' Kq 3 

q 2go 2go 
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AMB-I Driving Motor AMB-2 

FIGURE 2: Experimental Setup for AMB system 

Here Kq, K iq and iq are the negative stiffness of the 
uncontrolled magnetic bearings, the current stiffness 
and the control current of each magnet, respectively, c 
and a denote the shape factors of magnet, N is the 
number of coil turns, A is the pole face area of magnet, 
go denote the nominal air gap, and IqJ and Iq2 are the 
bias currents of each magnet pairs. FIGURE 2 shows 
the experimental setup for AMB system, which consists 
of two AMBs, displacement sensors, digital controller 
using DSP(TMS320C30), and PWM power amplifiers. 
The specifications of the AMB system are listed in 
TABLE 1. 

At first, the stabilization using four single-axis PD
control is applied with 

Kp= [3.0, 3.0, 3.0, 3.0] 

Kd= [.002, .002, .002, .002]. 

The stiffness and damping of stabilized AMB, 
including gyroscopic effect, are estimated theoretically 
in complex space, 

1200 0 1 185.4 -85.41 
Cc =l 0 197 J- jl-85.4 85.4 J 

C/1 =[~O 1~] N·s/m 

(23) 

1859 0 1 160 0 1 
Kc =l 0 845J K/1 =l 0 40J kN 1m. 

And then the isotropic and conventional optimal 
control using coupled 4-d.o.f. digital controller is 
performed to the stabilized system with the complex 
weighting matrices 

Qc = diag[8xI06, 8x106, 10, 10] 

Rc = diag[l, 1]. 

TABLE 1: Specifications of AMB System 

m = 8.280 [kg] 

Ip = .00788 [kg m2] 

Id = .09830 [kg m2] 

bl = 0.139 [m] 

bz= 0.138 [m] 

~ = 4n x 10'7 [Him] 

A = 450 [mm2] 

N = 400 [turns] 

go = 0.88 [mm] 

c=a= 0.92 

K. = 5000 [VIm] 

Kc = 0.420 [AN] 

TABLE 2: Modal Parameters of AMB System. 

mode IB IF 2B 2F 

Conventional Optimal Control 

Ie -138±452j -156±479j -204±579j -224±658j 

r Y1l r 1 1 II I 
r 1 1 r 1 1 ! Y2 j -1.33+ j.04( 1.07± j.Ol l 191U

i
Ol

) 

! -.947 ± j.Ol 

1 zi 1 -169±j3871 -.003'1' J.Oll -.43± J1.45 1-.16+ j.542 J 

l22 J l-16HjmJ .003±j.Ol J .45+ j1.49 l.16± j.552 

Isotropic Optimal Control 

Ie -146-465j -147+466j -210-582j -2 I 9+656j 

j;: 1 j ,,,'iOl 1 l'm:/,Il I I 1 I~~l -0.974 

1 ZI l -J jO~;74 jO~;83J lZ2 -.01- j1.03 .01- J1.02J 

The modal parameters of the conventional and isotropic 
optimal controlledAMB system are listed in TABLE 
2. It shows that both controlled systems have similar 
eigenvalues and the control forces act mainly for 
increasing damping. And that the eigenstructure of the 
conventional optimal controlled system is not isotropic 
since the relations, such as Zl =-jyl and Z2=-jy2, do not 
hold, unlike the isotropic optimal controlled system. 

FIGURE 3 shows measured unbalance responses 
and estimated control forces of each AMB at 
Q=4600rpm when unbalances of uJ=61g·mm and 
u2=37g' mm. In many practical rotor bearing systems, 
the major whirl radius and maximum control force are 
the important factors to be minimized. In isotropic 
optimal controlled AMB system, unbalance responses 
are characterized by a forward synchronous circular 
whirl; there exists no backward whirling component 
[3,6]. Thus the major whirl radii of isotropic optimal 
controlled systems tend to be smaller than those of 
conventional optimal controlled systems. FIGURE 4 
shows the measured major whirl radius and the 
maximum control force at each AMB for unbalance of 

-, 
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FIGURE 3 : Unbalance Responses and Control forces 
oj' AMBs at 4600rpm; -- iso., - - - - - con. 

II; 6Ig·mm, u2=37g·mm, as the rotational speed is 
\ ;11 ied. FIGURE 5 is the plot for the backward and 
IOlward components of the unbalance responses in 
IJ(;URE 4(a). FIGURES 4 and 5 clearly indicate that 
1 he major whirl radius remains to be smaller for the 
Isotropic optimal control than the conventional optimal 
control as the rotational speed varies. In addition, the 
lIlaximum required control force for the isotropic 
optimal control also tends to be slightly less than that 
lor the conventional optimal control except over the 
low rotational speed range. This is mainly due to the 
lact that, in the isotropic optimal control, the backward 
whirling component is eliminated by changing the 
phase and/or radius of backward control force 
, Illllponent. The phase shift alone, unlike the change in 
I ;UlillS, does not affect the maximum control force. 

CONCLUSION 
isotropic control of anisotropic rotor bearing system 

III complex state space is proposed, which assigns 
1',,)1 ("opic eigenstructure to the controlled system. The 
1\01 ropic optimal control of active magnetic bearing 
',\stem is performed experimentally and the control 
IIU rormance is compared with the conventional optimal 
t outrol method. It can be concluded that the isotropic 
"I'll mal control method, which essentially eliminates 
t he backward unbalance response component, is more 
efficient than the conventional optimal control in that it 
I~ivcs smaller major whirl radius and yet it often 
requires less control effort. 
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FIGURE 4: Maximum Whirl Radii and Control 
Forces of AMBs for Unbalance. 
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