
Fourth International Symposium on Magnetic Bearings. August 1994. ETH Zurich 321 

DYNAMICS AND STABILIZATION OF MAGNETIC SUSPENSION 
USING TUNED LC CIRCUIT 

Ju Jin 
Kanagawa Academy of Science and Technology, Kawasaki City, Japan 

Toshiro Higuchi 
Department of Precision Machinery Engineering, University of Tokyo, Tokyo, Japan 

AIISTRACT 
I'll date, the dynamic model of suspension systems 
lI': ing tuned LC circuit has not been established. This 
"IJler develops a transfer function model for such 
,.yslems by linearizing system equations near the 
('qui librium state. This model not only nicely 
\'xplains the inherent dynamic instability, but also 
"rovides a theoretical basis for analyzing and syn
Ihcsizing the dynamic behaviors. A new dynamic 
'.lUbilization method is also proposed. This method 
npplies damping to the movable "stator" rather than 
III the suspended object directly, and consequently, 
\Iable suspension without any mechanical contact is 
Ir hieved. Experimental results are shown to confirm 
III· theoretical analysis. 

INTRODUCTION 

As a simple and sensorless suspension method, 
slIspension using a tuned LC circuit has attracted 
wide attention from scientists and engineers [1]-[3]. 
This technology uses the variation of inductance of 
ihe electromagnet, which is determined by the gap 
hetween the electromagnet and the suspended object, 
10 modify the force-displacement characteristic of 
suspension systems. Fig. 1 shows a single degree of 
freedom version of a magnetic suspension system 
II sing tuned LC circuit. The electromagnet is the 
illductive part of the LC circuit. The LC circuit is 
designed in such a way that when the suspended 
object moves away from the electromagnet, induc
lance decreases. The LC circuit tends to become 
resonant, increasing coil current and hence attractive 
force, restores the suspended object to its original 
position. On the other hand, when the suspended 
object approaches to the electromagnet, inductance 

increases. The LC circuit goes away from the 
resonant state, coil current and thus attractive force 
decrease. The suspended object is pulled down by 
gravity. Fig. 2 shows its static force-displacement 
characteristic. It is obvious from Fig. 2 that if the 
suspended object moves within x < x max' attractive 
force acts as restoring force. If attractive force at a 
certain position, for example Xe (xe < xmax ), is bal
anced against that of gravity, it is possible to obtain 
a stable equilibrium position for the suspended 
object. 

Esinrot rv 
R 

Suspended Object 

I 

~D~P~ 
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FIGURE 2 Force/Gap Characteristic 
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Ilowever, this system is dynamically unstable, the 
suspended object tends to vibrate divergently[2]-[3]. 
Additional damping must be applied to restrict the 
vibration. Generally an oil damper is used by sub
merging the suspended object in oil [1]-[2]. This 
damping method involves mechanical contact, so 
free suspension cannot be realized. Owing to this 
reason, magnetic suspension using tuned LC circuit 
has found its applications only in some specialized 
fields. Another reason which hampers the develop
ment of this suspension technology is the complexity 
of theoretical analysis. Generally. several coupled 
nonlinear equations are necessary to express com
pletely such a suspension system. Practical analysis 
models have not been established so far. The main 
purposes of this paper is to eliminate these obstacles 
so as to promote the research and applications of 
this suspension technology. 

LIST OF SYMBOLS 

The symbols used in this paper are as follows. The 
subscript "e" denotes values at the equilibrium state 
and the superscript " - " denotes total values. 

E: Maximum value of source voltage (V) 

00: Source angular frequency (rad/s) 

C: Capacitance of LC circuit (F) 

R: Resistance of LC circuit (n) 

L : Inductance of electromagnet (H) 

x: Air gap (m) 

Xl: Displacement of movable "stator" (m) 

x2: Displacement of suspended object (m) 

F: Attractive force (N) 

i: Coil current (A) 

A: 

B: 

Coefficient of sin(wt) (A) 

Coefficient of cos(wt) (A) 

m 1: Mass of movable "stator" (kg) 

m2: Mass of suspended object (kg) 

F d : Disturbance (N) 

K 1: Spring coefficient (N/m) 

D 1: Damping on electromagnet (Ns/m) 

D 2: Damping on suspended object (Ns/m) 

t: Time (s) 

SYSTEM DESCRIPTION 

The LC circuit in Fig. 1 can be described by 

d2(Li) di i -- + R- + - = Erocos(wt) 
dt 2 dt C 

It has been found in real systems that (I ) f tilt 

current is a suppressed carrier amplitude molin l II " ' . 

signal in the form 

d 2(Li) - _ _ ---;;;z- i (t) = A sine wt) + B cos( ffit ) I , 

where A and 13 denote the baseband CII VI' I, 'II 
modulating signal and 00 is the carrier angulm I " 

quency. (2) A and 13 are functions of the gap, 
2 -7 

d (~l) A = A (x ,t ), 13 = 13 (x ,t ) 
dt 

Attracti ve force acting on the suspended objn 'l 
determined by 

- 1 dL72 F = ---I 
2 dx 

1 til [A2+jj2 13 2_A 2 - - J =-- - ---+---cos(2wt )+AB sin(2w[ ) (' 1 
2 dx 2 2 

Compared to the source frequency, the motion of Iii 
suspended object is relatively slow, so only the I"w 
frequency components of attractive force are impw 
tant to the movement of the suspended objeci 
Therefore the components with 200 can be neglecll'd 
As a result, attractive force may be approximated h 

- 1 dL [-2 -2J F ::::--- A +B 
4dX 

(4) 

In order to calculate attractive force, di is needed. 
dX 

The functional relation between inductance Land 
the gap x can be determined experimentally. Th~ 

following approximate formula is often used to 
express this relation. 

- 1(1 
L(x)=L~+ -- (5) 

x + 1(2 

where 1(1 and 1(2 are posItive constants and L~ 
denotes inductance when the gap is infinite. From 

equation (5), til can be obtained. 
dX 

The equation of motion of the suspended object is 

(6) 

These five equations. (1),(2),(4),(5),(6). together 
represent suspension systems using tuned LC circuit. 

STATIC CHARACTERISTIC 

First, let us consider the static characteristic of tuned 
LC circuit suspension systems. When the suspended 
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, j I \ llIys in the equilibrium position, inductance 
11 constant, and equation (1) becomes an ordi

ti l l fcrential equation. 

,/ 1/ die ie 
, I" R- + - = E wcos(wt) 

01 , dt C 

I I' ~ ,llIlion of equation (7) is 

sin(wt) + Be cos(wt) 

(7) 

(8) 

I, 
Ep __ 1 __ 

2 2' P - C,., Lew (9) 
p +R '" 

III ',lIluling equation (9) into equation (4), attractive 
U (' III the equilibrium state can be obtained. 

I, _.J... dL Ix [A} + B}] = _.J... dL Ix ~ (10) 
4 dX e 4 dX e p2+R 2 

~ ,,111 11 ion (10) is the mathematical representation of 
(I" slalk force-displacement characteristic shown in 
' Ill 2. 

/lY NAMIC MODEL 

N,IW let us proceed to studying the dynamic charac
Ii lislic of the magnetic suspension system using 
II lIlcd LC circuit shown in Fig. 1. 

( 'urrent Equation 

':lIhsLituting equation (2) into equation (1), compar
illg Ihe coefficients of sin(wt) and cos(wt) separately, 
I hl' next two equations can be obtained. 
)- - - --

Ii (LA ) +R dA -2w d (LB) +pwA -R wE = 0 (11) 
dt2 dt dt 

,f1(U) +R dB +2w d (LA) +pwB +R wA =E w (12) 
rit2 dt dt 

where 

1 -
i) = -- - Lw 

Cw 
Near the equilibrium state, system parameters can be 
approximated in the forms 

x = Xe + X L = Le + L 

A =Ae +A B =Be +B 

dL I . L = - x =K·x di Xe x 

(13) 
dL dL. 
-=-x 
dt dX 

dL I dL I d2L I - x- = - x + --2 x X = Kx + K 2x x 
dX dX e di e 

Inserting these formulae equations into (11) and 

(12), neglecting the nonlinear components of minute 
variation, we can get the functional relation between 
coil current and gap variation. 

4 

L11i si 

B(s)= i~ X(s) (14) 

where 

P4 = -LeAeKx 

P3 = -RAeKx 

L'Yi Si 
i=O 

2 1 
P2 = - 2Lew AeKx - CAeKx + RwBeKx 

2 2 
PI = CwBeKx - R w AeKx 

1 2 4 3 
Po= CWAeKx -Lew AeKx +RwBeKx 

114 = -LeBeKx 

'1'13 = -RB e Kx 

2 1 
112=-2LewBeKx - CBeKx -RwAeKx 

2 2 
111 = -CwAeKx - Rw BeKx 

1 2 4 3 110 = C W BeKx - LeW BeKx - Rw AeKx 

'Yo = (p2 + R 2)W2 

2R 
'YI = C + 2RLe w2 

'Y2 = R 2 + 2~e + 2L}w2 

'Y3 = 2LeR 

'Y4 = L} 

Force Equation 

(15) 

(16) 

Next let us consider the attractive force near the 
equilibrium state. When the nonlinear items of 
minute variation are neglected, equation (4) can be 
simplified to 

- IdL[-2 -2J F::::: --- A +B 
4dX 

A 2+B2 
e e K 

4 2x X (17) 

Change of attractive force due to gap variation is 
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A 2+B 2 
e e K 

4 2x X (18) 

Substituting equation (14) for A and B respectively, 
gives its Laplace transformation 

4 

L/3i Si 

F(s) = 
i=O 

X(s) (19) 
4 

LYi Si 
i=O 

where "s" denotes the Laplace transformation and 

/34 = Q (2Le K,,2-Le2K 2x) 

/33 = 2Q (RK}-RLe K 2x) 

Q 

Transfer Function Model 

The suspended object is governed by equation (6). 
At the equilibrium state, Fe = m2g, Equation (6) 
can be rewritten as 

(21) 

In traditional tuned LC circuit suspension systems, 
the electromagnet is fixed, therefore X2 = x and 
hence X2 = x. Substituting equation (19) into (21), 
gives its Laplace transformation as 

4 

LYi Si 
i~O 

X2(s) = -6--Fd (s) 

L<Xi Si 
i=O 

where 

{~ = m2Y4 <X5 = m2Y3 

<X4 = m2Y2 + /34 <X3 = m2Yl + /33 

~= m2YO + /32 <Xl = /31 <XQ = /30 

(22) 

(23) 

Equation (22) is the transfer function model of tuned 
LC circuit suspension systems. 

DYNAMIC INSTABILITY 

From equation (23), we find the coefficient <Xl is 

Ae2+Be2 [2 2 R 1 <Xl = /31 = 2 -Roo (Le K 2x-Kx )-CK2x 

Since inductance of the electromagnet is invers\'1 \' 
proportional to the gap as indicated by equation (.., I, 
it is found that the following condition is al wa v 
satisfied: 

Combining formula (24) with <Xl> it is easy to 111 111 

that <Xl is always negative. This means that the ~ '. 
tern has at least one pole lying in the right half \ 
plane, so the system is unstable, i.e., tuned LC \ ' 11 

cuit suspension systems are inherently dynamicall y 
unstable. 

INDIRECT DAMPING METHOD 

In this section, we will discuss a new dampilll 
method, the indirect damping method. Fig. 3 illlI '. 
trates the suspension systems using this melhud 
Compared to the traditional suspension sysl ~'1I1 

shown in Fig. 1, the new system has two remakah h 
features. (1) The "stator" , the electromagnet in III 
case, is movable, (2) Damping is applied to 11 11 

movable "stator" instead of to the suspended objn I 
directly. Damping effect applied to the movaili. 
"stator" is transferred to the suspended objeci h ~ 

attractive force, it suppresses any self-susta illctl 
oscillation of the suspended object, as a resull , II 

stable suspension is achieved. 

c Electromagnet 

Suspended Object 

Mg 

FIGURE 3 Indirect Damping MellI!" I 
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Trllnsfer Function Model of New System 

I Ill' suspension system shown in Fig. 3 can be 
.h -ri bed by 

1II 1 i' l =F -D1X1-K1X1 (25) 

III , i'2 = Fd - F (26) 

here F is the change in attractive force due to 
( I I - Xl) ' 

.. 'ording to equation (19) in section 5, attractive 
!Ill (;c in this case can be described in the form 

4 

Ll3i si 
i~ 

I ( .I' ) = 4 [X 2(S)-X 1(s)] 

LYi Si 

(27) 

I ('w ri ting equations (25) and (26) in the forms of 
I /l place transformation, and combining them with 
'(lIlation (27), yields 

4 6 

Ll3i si L~iSi 

\ 1(.1') = 
i~ 

Fd(S), X 2(s) = 
i=O 

Fd(S) (28) 
8 8 

LAi Si LAi Si 
i~ i=O 

~ here (l3i. i = 0,1,2,3,4) and (Yi. i = 0,1,2,3,4) are 
111(' same as what defined in equations (16) and (20) 
. Ii scction 5, and the others are defined as follows. 

AH- m 1m 2Y4 

J..., - In 1m2Y3+m2D1Y4 

)., ,;=m 1m 2Y2+m 2D 1Y3+K 1m 2Y4+(m 1+m 2)134 

\ -m 1m 2Y1+m 2D lY2+K 1m 2Y3+(m 1+m 2)133+D 1134 

AI=m 1m 2YO+m2D lY1+K 1m 2Y2+(m 1+m 2)I3z+D 1133+K 1134 

AI=m2D lYo+K Im2Y1+(m1+m2)131+D 1132+K 1133 

A, -K Im2YO+(m 1+m2)130+D 1131+K 1132 

AI- D 1130+K 1131 

Ao=K 1130 

1,(, -mIY4 

I \- mlY3+DlY4 

1"1 mlY2+D1Y3+KIY4+134 

I, I- m 1Y1+D 1Y2+K lY3+133 

I. -m1Yo+D 1Y1+K lY2+132 

I d-=D1Yo+K 1Yl+131 

I o-=K 1Yo+130 

(29) 

E 
C 

Stability Condition 

As mentioned in section 6, 131 is usually negative. 
However, it is noted that 130 is always positive in 
real systems. Hence from the definitions of Al and 
Ao, if K 1 and D 1 are chosen as 

131 
K 1 > 0, D 1 > - K 1- (30) 

130 

it is possible to make Al positive. This means that it 
is . possible to make the system shown in Fig. 3 
stable by using the indirect damping method. 

EXPERIMENTAL RESULT 

To confirm the analysis discussed in previous sec
tions, we carried out an experimental verification 
using the device shown in Fig. 4. The suspended 
object is a cantilever, it moves in the vertical plane. 
The electromagnet for suspension is fixed to one 
side of a parallel spring. As the damping material, 
silicon Gel is used. The system parameters are listed 
in Table 1. 

TABLE 1 System Parameters 

61.0 (V) R 15.8(Q) 
9.54(IlF) Le 25.1 (mH) 

Kx -11.2 (Him) K2x 1.35x104 (H/m2) 
x1e 0.5xlO-3 (m) X2e 1.25xlO-3 (m) 
m1 1.6 (kg) m2 1.5 (kg) 
I 0.22 (kg·m2) f 400.0 (Hz) 
1 0.236 (m) 

mg 

FIGURE 4 Experimental System 
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'rhe system response to a pulse disturbance force 
applied directly to the suspended object is illustrated 
in Fig. 5. It is obvious from that stable suspension 
was achieved. 

0.0 0.8 1.6 2.4 3.2 3.6 

Time (sec.) 

FIGURE 5 System Response to Pulse Disturbance 
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FIGURE 6 5-DOF Suspension System 

FIGURE 7 Steel Plate in Suspension State 

In addition, we have carried out a 5 degrees-of rrl' ( 
dom suspension experiment using a system show II III 
Fig. 6. A steel plate with thickness 3 mm and 1111' 11 

300 cm 2 was suspended successfully. Fig. 7 is Ih, 
photograph shows the suspension state. 

CONCLUSION 

In this paper, we have developed a transfer funclillil 
model for magnetic suspension systems using \ulI l'd 
LC circuit and proposed a new dynamic damplllil 
method. Their validity are verified by experimcill II 
results. In addition, since the electrostatic SUSpl'1I 
sion using tuned LC circuit is very similar \0 1111 

tuned LC circuit magnetic suspension, the theoreli(,! \1 
analysis and the proposed "Indirect Dampill l 
Method" mentioned above can also be used I II 

analyze and stabilize electrostatic suspension s 
terns using tuned LC circuit. We believe thai II" 
model and the new damping method discussed III 

this paper will play an important role in the resc:lld l 
and applications of this suspension technology. 

REFERENCES 

[1] B. Z. Kaplan, "Analysis of a method for IIW I 

netic levitation", Proceedings of lEE, V, II 
114, No. 11, pp. 1801-1804, November 196!. 

[2] J. W. Henn, "Linear perturbation models 1111 

a.c magnetic suspension systems: experimt· II I III 
and theoretical results", Proceedings of '''' . 
Vol. 127, Pt. D., No. 2, pp. 64-74, marl'il , 
1980. 

[3] J. Jin, "Magnetic suspension using tuned I ( ' 
circuit" , Doctoral Thesis, University of Tok y\!. 
1992. 

[4] J. Jin and T. Higuchi, "Modeling and stabil i/l 
tion for magnetic suspension system usi ll l 
tuned LCR circuit", Proceedings of the /F'" 
International Conference on System Engillt'( ·, 
ing, pp. 411-415, September 1992. 

[5] J. Jin and T. Higuchi, "Dynamics and stabi lil } 
of magnetic suspension systems using tll"I'1! 
LCR circuit", Proceedings of the 1st Intel'l/u 
tional Conference on Motion and Control . pp 
633-638, September 1992. 

[6] J. Jin and T. Higuchi, "A new approach 1(, 

sensorless magnetic suspension system usilll 
tuned LCR circuit: theoretical analysi ~" I 

Proceedings of SICE'91 , pp. 1001-1004, Jul 
1991. 

, , 


