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ABSTRACT

v date, the dynamic model of suspension systems
using tuned LC circuit has not been established. This
paper develops a transfer function model for such
systems by linearizing system equations near the
cquilibrinm  state. This model not only nicely
cxplains the inherent dynamic instability, but also
provides a theoretical basis for analyzing and syn-
thesizing the dynamic behaviors. A new dynamic
slabilization method is also proposed. This method
applies damping to the movable "stator” rather than
1o the suspended object directly, and consequently,
slable suspension without any mechanical contact is
achieved. Experimental results are shown to confirm
the theoretical analysis.

INTRODUCTION

As a simple and sensorless suspension method,
suspension using a tuned LC circuit has attracted
wide attention from scientists and engineers [1]-[3].
I'his technology uses the variation of inductance of
ihe electromagnet, which is determined by the gap
between the electromagnet and the suspended object,
10 modify the force-displacement characteristic of
suspension systems. Fig. 1 shows a single degree of
freedom version of a magnetic suspension system
using tuned LC circuit. The electromagnet is the
inductive part of the LC circuit. The LC circuit is
designed in such a way that when the suspended
object moves away from the electromagnet, induc-
tance decreases. The LC circuit tends to become
resonant, increasing coil current and hence attractive
force, restores the suspended object to its original
position. On the other hand, when the suspended
object approaches to the electromagnet, inductance

increases. The LC circuit goes away from the
resonant state, coil current and thus attractive force
decrease. The suspended object is pulled down by
gravity. Fig. 2 shows its static force-displacement
characteristic. It is obvious from Fig. 2 that if the
suspended object moves within ¥ < X,.,, attractive
force acts as restoring force. If attractive force at a
certain position, for example x, ( x, < X, ), is bal-
anced against that of gravity, it is possible to obtain
a stable equilibrium position for the suspended
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FIGURE 1 Tuned LC Circuit Suspension
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FIGURE 2 Force/Gap Characteristic
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However, this system is dynamically unstable, the
suspended object tends to vibrate divergently[2]-[3].
Additional damping must be applied to restrict the
vibration. Generally an oil damper is used by sub-
merging the suspended object in oil [1]-[2]. This
damping method involves mechanical contact, so
free suspension cannot be realized. Owing to this
reason, magnetic suspension using tuned LC circuit
has found its applications only in some specialized
fields. Another reason which hampers the develop-
ment of this suspension technology is the complexity
of theoretical analysis. Generally, several coupled
nonlinear equations are necessary to express com-
pletely such a suspension system. Practical analysis
models have not been established so far. The main
purposes of this paper is to eliminate these obstacles
so as to promote the research and applications of
this suspension technology.

LIST OF SYMBOLS

The symbols used in this paper are as follows. The
subscript "e" denotes values at the equilibrium state
and the superscript " ~ " denotes total values.

E Maximum value of source voltage (V)
[0 Source angular frequency (rad/s)

C:  Capacitance of LC circuit (F)

R Resistance of LC circuit (€2)

L Inductance of electromagnet (H)

X Air gap (m)

x,:  Displacement of movable "stator” (m)
x,:  Displacement of suspended object (m)
F: Attractive force (N)

i: Coil current (A)

A: Coefficient of sin(wt) (A)

B: Coefficient of cos(wt) (A)

my: Mass of movable "stator" (kg)

m,:  Mass of suspended object (kg)

F;: Disturbance (N)

Ki:  Spring coefficient (N/m)

D,: Damping on electromagnet (Ns/m)
D,: Damping on suspended object (Ns/m)
t: Time (s)

SYSTEM DESCRIPTION
The LC circuit in Fig. 1 can be described by

d*(Li) di 1
——== + R— + — = E mcos(wt |
dr* d = C (o) ‘
It has been found in real systems that (1) ¢ !l
current is a suppressed carrier amplitude modulati

signal in the form

2
d(L‘ )7 (t) = Asinar) + B cos(@r) (

where A and B denote the baseband enveloy
modulating signal and ® is the carrier angular f1s
quency. (2) A and B are functions of the gap,

d? ny

P =24 = A(xt)

B =B(x,)
Attractive force acting on the suspended object |

determined by

F= 1 dL 7
2 dx

__}_gg[/12+§2+1§2—f12

2 & 2 > cos(2m¢ )+AB sin(2wr )| (1)
Compared to the source frequency, the motion of 1l
suspended object is relatively slow, so only the low
frequency components of attractive force are impor
tant to the movement of the suspended object
Therefore the components with 2m can be neglected
As a result, attractive force may be approximated by

F :—ldL [A +§2] (4)

. dL .
In order to calculate attractive force, = is needed
%
The functional relation between inductance L and
the gap ¥ can be determined experimentally. The
following approximate formula is often used 1o
express this relation.

. 9]
LXx)=L.+

- &)
X + K

where ¥; and ¥, are positive constants and L.,
denotes inductance when the gap is infinite. From

equation (5), % can be obtained.
The equation of motion of the suspended object is
myi,=Fg +myg — F (6)

These five equations, (1),(2),(4),(5),(6), together
represent suspension systems using tuned LC circuit.

STATIC CHARACTERISTIC

First, let us consider the static characteristic of tuned
LC circuit suspension systems. When the suspended
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Iject stays in the equilibrium position, inductance
i» n constant, and equation (1) becomes an ordi-
, differential equation.

: ", FR di, + L = E ocos(mt) @)
i dt C
il solution of equation (7) is
\, sin(ot) + B, cos(ot) ®
hare
, ER _ Ep L 1o ©

pi+RY TS p2+R2’p: Co

mbutifuting equation (9) into equation (4), attractive
furce at the equilibrium state can be obtained.

{A2+BZ} _1d
xe e e 4d%

E2

1db _E”
¥ p24R?

' (10)

Iquation (10) is the mathematical representation of
ihe static force-displacement characteristic shown in

g 2.

NYNAMIC MODEL

Now let us proceed to studying the dynamic charac-
ienistic of the magnetic suspension system using
inned LC circuit shown in Fig. 1.

('urrent Equation

“ubstituting equation (2) into equation (1), compar-
ing the coefficients of sin(wt) and cos(wt) separately,
ihe next two equations can be obtained.

dNLAY  dA d(B) - =
——+R——-2 +PWA—-Rm®B =0 11
dr? dt ® dt pa @ (i1
A*LB) _ dB d(LA) < .

4R —+20———=+PwB +R wA =F 12
dr? dt ® dt P o (12
where

1 .

.:__L
P Co W

Near the equilibrium state, system parameters can be
approximated in the forms

X=x, +x L=L,+L
A=A, +A B=B,+B
[ dl. _ dL 13)
ﬁde_xx—Kx'x _£=_'
% | ¢ dt dx
dL dl. d’L
—l; =t —|x x =K, + Kpx
ax [F a0 dx? T hE

Inserting these formulae equations into (11) and
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(12), neglecting the nonlinear components of minute
variation, we can get the functional relation between
coil current and gap variation.

4 . 4 .
2pist st

AG)=5—X(6)  B()=5—X(6) (14
st st
i=0 i=0
where
’p4 = _LeAer
pP3= _RAer
py=—-2L,0’A,K, — %AEKX + R 0B, K,
<
2 2
P1= EwBer -—RO)Aer
Po= —é—mZAer - L,w*A,K, + Rw’B,K,
M4 = -L.B.K,
'fl3 = _RBer
N, = 2L, 0*B,K, — —é—Ber - RwA,K, 15)
<
2 2
n = _EwAEKX -Rw Ber

No = % ’B,K, — L, 0*'B,K, — Rw’A, K,

.

-

Yo = (p* + RH)o?
2R 2
=— +2RL
M1 C e @
< 2L

Y»=R%+ Te + 2L 20" (16)
Y3 = 2LeR
Y4 =L22

Force Equation

Next let us consider the attractive force near the
equilibrium state. When the nonlinear items of
minute variation are neglected, equation (4) can be
simplified to

K, A, 3 K.B, A2+B}?
e 2 T 4

Change of attractive force due to gap variation is

Ko x 17
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K,AeA K.B, A,_?+B£K
T 2 5t

Substituting equation (14) for A and B respectively,
gives its Laplace transformation

4 -
ZﬁiS'
=0

4 =
st
i=0

I (18)

F(s)=

X(s) (19)

where "s" denotes the Laplace transformation and

’B4 = Q (ZLE sz_LezKZx )
Bs = 20 (RK,-RL.K»,)

2K 2
B, = Q[4Le o’ K2+ =R 2K, 2L, 0pK 5| (20)
1
B =20 (R mszz—g—Kh ~L.R 0K )
20’k 2
Bo=0 [—Cx-+2Le 0K, 2p?0’K 5, —R 0K 5,
AMB2

Q“4

Transfer Function Model

The suspended object is governed by equation (6).
At the equilibrium state, F, = m,g, Equation (6)
can be rewritten as

sz.C'2+F =Fd (21)

In traditional tuned LC circuit suspension systems,
the electromagnet is fixed, therefore %, =% and
hence x, = x. Substituting equation (19) into (21),
gives its Laplace transformation as

4 N
ZYi st
Xy(s) = ———F4(s) 2)

Z(x,-si
i=0

where

O = myYy Q5 = myYs3
oy =myp+ By O03=myy +Ps (23)
wm=mp+PB =B  0p=p

Equation (22) is the transfer function model of tuned
LC circuit suspension systems.

DYNAMIC INSTABILITY
From equation (23), we find the coefficient a; is

A2+B?

R
o =P = -R O)Z(Lesz—sz)—’CTsz
Since inductance of the electromagnet is inverscly
proportional to the gap as indicated by equation (")
it is found that the following condition is alway
satisfied:

LK, —K.2>0 (24)

Combining formula (24) with o, it is easy to luul
that o, is always negative. This means that the sy
tem has at least one pole lying in the right hall
plane, so the system is unstable, i.e., tuned LC cu
cuit suspension systems are inherently dynamically
unstable.

INDIRECT DAMPING METHOD

In this section, we will discuss a new dampiny
method, the indirect damping method. Fig. 3 illu
trates the suspension systems using this method
Compared to the traditional suspension systen
shown in Fig. 1, the new system has two remakabl
features. (1) The "stator” , the electromagnet in (hi:
case, is movable, (2) Damping is applied to (h
movable “stator" instead of to the suspended object
directly. Damping effect applied to the movabl
"stator” is transferred to the suspended object Iy
attractive force, it suppresses any self-sustainel
oscillation of the suspended object, as a result, o
stable suspension is achieved.
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FIGURE 3 Indirect Damping Method
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I'ansfer Function Model of New System

Ihe suspension system shown in Fig. 3 can be
escribed by

'Il|\.|=F—D1X'1—K1X1 (25)
.'!h\")_ :Fd '—F (26)
where Fis the change in attractive force due to
(1) = X1)

\ccording to equation (19) in section 5, attractive
laree in this case can be described in the form

4 .
ZB;‘S‘

(8) = S——1Xa(s)X1(5)] @n
ZYiSl
i=0

ltewriting equations (25) and (26) in the forms of
I aplace transformation, and combining them with
cquation (27), yields

4 . 6 .
¥Bis' Yes!
Vi9) = F—Fy(s), Xas) = 7

Z)\.,'Si Z)\.,’Sl
i=0 i=0

where (B; i =0,1,2,3,4) and (y; i =0,1,2,3,4) are
the same as what defined in equations (16) and (20)
in section 5, and the others are defined as follows.

Fa(s) (28)

I
[Ay=mmimoyYs

Ay f?llmz'Y3+m2D 1Ya

h=maymaYptmoD 1 Ys+K imoy,+H(m+mo)By

hymymoyi+moD Y+ K ymopysH(m+mo)Bs+D 1By

Ay mgYotmoD YK moyat(m +mo)BotD 1Ba+K 1By
hy=moD yYotK imay+(my+mo)Bi+D 1 Br+K B3

Ay KamagygH(im o +ma)Bo+D 1 Bi+K 1By

A-D1BotK By

Ao K 1Bo

Lo M1 Ya

L myYstD Yy

LimytD v tK v +B4

LysminD y+K o vs+P3 (29)
LyomyYotD 1y +K o2

Li=DYotK By

Lo K 1¥otBo

Stability Condition

As mentioned in section 6, B; is usually negative.
However, it is noted that By is always positive in
real systems. Hence from the definitions of A; and
Ao, if K4 and D are chosen as

D, > —K1% 30)

K, >0,
it is possible to make A, positive. This means that it
is possible to make the system shown in Fig. 3
stable by using the indirect damping method.

EXPERIMENTAL RESULT

To confirm the analysis discussed in previous sec-
tions, we carried out an experimental verification
using the device shown in Fig. 4, The suspended
object is a cantilever, it moves in the vertical plane.
The electromagnet for suspension is fixed to one
side of a parallel spring. As the damping material,
silicon Gel is used. The system parameters are listed
in Table 1.

TABLE 1 System Parameters

K, | -11.2 (H/m) Ko,

Xle 0.5%x1073 (m) Xoe 1.25x1073 (m)
m, 1.6 (kg) m, 1.5 (kg)
0.22 (kg'm?) f 400.0 (Hz)

61.0 (V) R
9.54(uF) L,

15.8(Q)
25.1 (mH)
1.35x10* (H/m?)

0.236 (m)
Damping Parallel Plate
Material Spring

€

FIGURE 4 Experimental System
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The system response to a pulse disturbance force
applied directly to the suspended object is illustrated
in Fig. 5. It is obvious from that stable suspension
was achieved.
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FIGURE 5 System Response to Pulse Disturbance
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FIGURE 6 5-DOF Suspension System
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FIGURE 7 Steel Plate in Suspension State

In addition, we have carried out a 5 degrees-of fice
dom suspension experiment using a system shown i
Fig. 6. A steel plate with thickness 3 mm and arci
300 cm? was suspended successfully. Fig. 7 is th
photograph shows the suspension state.

CONCLUSION

In this paper, we have developed a transfer function
model for magnetic suspension systems using tuncil
LC circuit and proposed a new dynamic dampiny
method. Their validity are verified by experimental
results. In addition, since the electrostatic suspen
sion using tuned LC circuit is very similar to (h
tuned LC circuit magnetic suspension, the theoreticul
analysis and the proposed “Indirect Damping
Method" mentioned above can also be used 1
analyze and stabilize electrostatic suspension sy
tems using tuned LC circuit, We believe that tl
model and the new damping method discussed in
this paper will play an important role in the rescarch
and applications of this suspension technology.
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