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ABSTRACT 
An active magnetic bearing(AMB) system is 

developed, which is equipped with two sets of 
piezoelectric-type force transducers so that in-plane 
forces generated by a pair of magnetic bearings can be 
lIleasured. Each magnetic bearings are mounted on 
':1ch set of force transducers, consisting of four shear
Iype cells. 

In the process of modal testing, the radial bearings 
i 1\ the stabilized closed loop system are excited by the 
I andom and sinusoidal voltage inputs to power 
alllplifiers, and then the forces and displacements at the 
hcarings are measured simultaneously, all quantities 
being defined in the complex domain. The modal 
properties of AMB system are then effectively 
Identified from directional frequency response functions 
(dFRFs) defined between the complex inputs and 
OlitputS. It is shown that we can also identify the 
position and current stiffnesses from the relations 
hClween forces, displacements and currents. 

INTRODUCTION 
Active magnetic bearings (AMBs) have been 

Increasingly interesting for industrial applications 
hecause of the advantages of non-contact, elimination 
of lubrication, low power loss and controllability of the 
hearing dynamic characteristics[I-2]. Typical industrial 
Ippi ication fields include turbomachinery, space or 
vacuum technology, bearings in machine tools, etc. 
Arter an AMB system is constructed, an important 
ISSIIC for designers is to investigate whether the system 
hehaves in accordance with the original design analysis 
of the closed loop system[3]. AMB systems often show 
li screpancies between the predicted and the measured 

II 'llaInic behaviors due to the inaccurate modeling 

associated with the magnetic forces, frequency 
characteristics of the power amplifiers and control 
coils, leakage and fringing effects of the magnetic 
fluxes, eddy current effects, etc. Thus accurate system 
parameter identification is essential in order to improve 
the system performance and stability. 

In this paper, two sets of piezoelectric-type force 
transducers measure in-plane forces generated by a pair 
of magnetic bearings. The measured force signals can 
be used as a useful and essential information for 
accurate system parameter identification. The modal 
properties of the AMB system are effectively identified 
from directional frequency response functions(dFRFs) 
obtained by the complex modal testing. It has been well 
known that, whereas both forward and backward modes 
in the classical FRFs appear over one-sided frequency 
region, resulting in overlapping of the otherwise 
physically well separated modes, they are completely 
separated in the dFRFs[4-8]. 

DIRECTIONAL FREQUENCY RESPONSE 
FUNCTIONS FOR AMB SYSTEM 

The use of complex coordinate has been proven very 
convenient in rotor dynamic analysis because it allows 
rather straightforward physical interpretation and it 
reduces the order of equations of motion by one half for 
axisymmetric rotor systems [4-8]. The complex modal 
analysis, which has been developed for rotating 
machinery, based on the use of complex coordinates, 
clearly defines the backward and forward modes and 
separates them in the frequency domain so that the 
effective modal parameter identification is possible. 

Equation of Motion in Complex Domain 
Consider a rigid rotor magnetic bearing system, 

which can be modeled as a symmetric rigid rotor 
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supported by two anisotropic bearings as shown in 
FIGURE 1. 

BRG-l BRG-2 

FIGURE 1: Rigid rotor active magnetic bearing system 

The equation of motion in complex domain can be 
written at each bearing locations as 

M I fl.-t) + [Cg +C I ]p(t) +Cb(t)p(t) 
(1) 

+K IP(t) + KbP(t) = g(t). 

where j means the imaginary number (= A and the 

bar denotes the complex conjugate. Here the complex
valued system matrices, displacement and force vectors 
are defined as 

P(t)={PJ{t)}={YJ{th jZJ{t)} 
P2{t) Y2{t)+ jZ2{t) , 

g{t )={gJ(t )}={fY1 (t) + jfzl (t)}, 
g 2{t) fy] (t)+ jfz] (t) 

M _[ mI!~+id ml! lf 2 -idl 
1- ml!lf2 -id meT +id J 

[- jOi p jOi p J 
C g = jOi p - jOi P 

id = Id/b;. ip =Ip / bt. fi =bd b/ ;i=1.2. 

2Ci = cY.Y/ +czz/ - j(c)'Z/ -CZyJ. 

2!.lci =cm -czz/ - j(c)'Z/ +czyJ 

2ki = km + kzz/ - j( k)'Z/ - kzyJ 

2!.lki = km - kzz/ + j( k)'Z/ + kzyJ 

(2) 

In the above expressions, m is the total mass of thl 
rotor, Ip and It are the diametrical and polar rna:,' 
moment of inertia about the center of gravity(C.G.) "I 
the rotor, respectively, bt is the bearing span, bi,i= I, • 

is the distance of the i-th bearing from C.G., a lit I 
cij and kij .i.j= y.z. are the damping and stiffnc:,', 

coefficients of the two anisotropic bearings. 

Directional frequency response functions 
Taking Fourier transform of equation (1), we obtai II 

I ~I ~b ]{PJ-jW)} = {~(jW)} l Db D I P(jW) G{Jw)' 
(3) 

where P(jw),P(jw),G{Jw) and G{Jw) are the Fouri " 

transforms of p(t),p(t),g(t) andg{t), respectively, allti 

the partitioned dynamic stiffness matrices are 

DI{Jw) = KI _w2 M 1+ jJ,cI +Cg). 

D b{Jw) = Kb + joCb 

Db(jw) = Kb + joCb' 

DI{Jw} = K I _w2 M 1+ joA,C g+Cf )· 

From equation (3), the two-sided directional frequen ' 
response matrices(dFRMs) are defined as 

{PJ-Jw)} ='lHgp(jW) H gp{Jw)l~{Jw)} (4) 
P(jw} H gp{Jw} H gp(jw) G{Jw)' 

where 

Hgp(jw) = [DI -DbDi Dbrl. 

Hgp{Jw) = [DI -DdDi Dbrl. 

Hgp(jw) = -[DI -DbDi Dbr1 DbD:/. 

Hgp{Jw} = -[D I -DbDi Dbr1 DbDi . 

Here Hgp(jw} and Hgp{Jw) are referred to as th ' 

110rmo/ dFRMs whereas Hgp(jW) and Hgp{Jw) arc 

referred to as the reverse dFRMs[4,7]. From equatioJl ~ 
(3) and (4), it can be easily proven that 

H gp(jw) = H gp( - jW). H gp(jw) = H gp( - jW). (5) 

Therefore, in order to define the dFRMs completely, it 
is sufficient to consider two dFRMs, i.e. 

P(jw) = [H gp(jw) H gp{Jw)l{ ~~~:n. (6) 

It has been well known that, for an isotropic AM O 
system, the reverse dFRMs vanish, i.e. 

(7) 

FIGURE 2 shows the simple two-complcx 
input/single-complex output model. From FIGURE 2, 
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when g{t) and g(t) are not fully coherent, dFRFs 
1I '.sociated with complex inputs and output of the AMB 
Iyli[em can be estimated from[4-7] 

Sgp(JliJ)Sgg(JliJ) 
1 - ----"''---c------,---=''--;--------. 

_ (.) _ Sgp(JliJ) Sgp(JliJ)Sgg(jliJ) 
lIgpjliJ- S _ 2.(.) 

gg(Jw) 1 r gg jliJ 

Sgp(JliJ)Sgg(JliJ) 
1 - --""--;-----,--""',---;-

• (. ) _ Sgp(JliJ) Sgp (JliJ)Sgg (JliJ) 
H gp jliJ - 2 ( ) 

Sgg(jw) 1- r gg jliJ 
(8) 

where Sjk(J liJ).i,k= p,g,g, are the two-sided directional 

11110- and cross-spectral density functions(dPSDs and 
dCSDs) between the complex time signals, 

,{t ),g(t)andg(t), respectively, and r;g(jliJ) is the 

rt lrectional coherence function (dCOH) between the 
I \ IInplex inputs, g( t) and g( t), defined as 

2. ISgg(JliJ)12 
Ygg(jliJ) = S (. )S .. (. )" (9) gg j liJ gg j liJ 

g(t) ----I 

p(t) 

g(t) ----I 

Fig. 2 Two-complex input/single-complex output model 

.,: XPERIMENTAL SET UP AND PROCEDURE 
FIGURE 3 shows an AMB system equipped with 

1 wo sets of piezoelectric-type force transducers so that 
III -plane forces generated by a pair of magnetic 
hearings can be measured. Each set of force transducers 
'onsists of four shear type cells, on which radial 
lIlagnetic bearings are mounted. The AMB system is 
~ I abilized by P-D digital controller with a DSP board. 
t.inearizing the magnetic force w.r.t. the neutral 
position, the net magnetic force f(t) due to small 
pe rturbations, p(t), in air gap and, ie(t), in control 
'urrent, can be expressed as . 

(10) 

where Kj ,Kq are the current and position stiffnesses, 

It:spectively. Since it is difficult to directly control the 
'lirrent, the conversion of voltage to current is achieved 
through the power amplifiers[6,8]. Approximating the 

magnetic actuator including the PWM amplifier and 
electromagnets as a first order delay element, we can 
express the control current to voltage relationship in 
Laplace domain as 

ie(s) = ~ve(s) (11) 
1+ 'res 

where ve' 'r e and Ke are the control voltage, the time 
constant and the gain of the magnetic actuator, 
respectively . 
FIGURE 4 shows the block diagram for parameter 
identification of the AMB system, where two 
independent band limited random noise(0-400Hz) or 
sinusoidal excitation signals(25 Hz) are applied to the 
input ports of the power amplifiers for simultaneous 
excitations in the y- and z- directions of the stabilized 
closed loop system. The displacements are perturbed 
due to the excitation forces generated in 
electromagnets. Two pairs of gap sensors measure the 
y- and z- directional displacements of the shaft at 
bearings # 1 and # 2, giving two-complex responses( or 
two pairs of real responses), and the excitation forces 
are measured by the two sets of force transducers. The 
force, displacement and excitation voltage records are 
processed in the LMS signal analyzer, and stored for 
further processing. 

RESULTS AND DISCUSSION 
A series of preliminary tests are performed in order 

to accurately identify the physical parameters of the 
AMB system. Among others, the current and position 
stiffnesses, which are the important parameters 
affecting the control performance of the AMB system, 
should first be accurately estimated[8]. Analyzing 
sinusoidal signals in time and frequency domains, we 
can calculate the current and position stiffnesses from 
equations (10) and (11). In equation (11), the input 
voltage is estimated from the excitation and sinusoidal 
control voltages of digital controller. TABLE 1 gives 
the rotor specifications, and compares the computed 
and identified actuator properties. The discrepancy 
between the measured and computed values is found to 
be larger for Kq than for K;, the measured values being 
smaller than the computed ones. It implies that the 
actual equivalent air gap is larger than the design 
value. With the magnet parameters determined, the 
modal properties of the rotor bearing system are 
identified through a series of complex modal testing in 
order to accurately model the closed loop system. 
FIGUREs 5 and 6 are the real and imaginary plots of 
the normal and reverse dFRFs at bearing #1, 
respectively, at the rotational speed of 6800 rpm(114 
cps). The figures indicate that the residues in the 
reverse dFRF are about one eighth in magnitude of the 
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Load cell 

Collet chuck joint 

Radial Bearing Driving Motor Radial Bearing Axial Bearing 

FIGURE 3: AMB system equipped with force transducers 

Computer 

LMS SYSTEM 

PWMAmp, Gap Sensor Amp. 

FIGURE 4: Block diagram for parameter 
identification of AMB system 

normal dFRF, implying that the tested AMB systeJll I ' 

weakly anisotropic in nature. Unlike the classical 
FRFs, FIGURE 5 shows the complete separation 01 
the forward and backward modes, i.e. the forw:lI(1 
modes on the positive frequency region 
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FIGURE 5: Real/Imaginary Plots of normal 
dFRFs(H g[p[) at Bearing #1 , Q = 6800 rpm 
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FIGURE 6: Real/Imaginary Plots of reverse 
dFRFs(Hg[p) at Bearing #1, Q = 6800rpm 
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.lIld the backward modes on the negative frequency 
I ·gion. Therefore the accuracy of the modal 
parameter extraction is much improved. TABLE 2 
.lIl1lmarizes the modal parameters extracted from 

!I ll1 lti-mode curve fit of measured dFRFs, along with 
I he computational results for comparison. Note that 
I he calculated and identified modal frequencies are in 
I~()od agreement. But the identified damping ratios are 
I(Hl nd to be smaller than the computed ones. The 
discrepancy may take place due to the unmodeled 
',ysl.em parameters such as time delays associated with 
low-pass filters, nonlinearity of magnetic force, eddy 

IIITent effect, leakage, etc. 

TABLE 1: Specification of Rotor and Properties of 
Actuators 

Rotor 

11 1; 1).66 kg Id : 0.1089 kg_m2 

I,. : 0.00725 kg_m2 bt : 0.172 m 

h, : 0.101 m b2 : 0.071 m 

Actuator 

I" opcrties identified computed 

Current Stiffness (N/A) 

, 
288 305 'Vi 

"I 286 305 

w2 283 300 

112 280 300 

Position Stiffness (N/m) 

'11'1 l.21E6 1.38E6 

' III 1.19E6 1.38E6 

t!y2 1.14E6 1.33E6 

tJ/ 2 1.13E6 1.33E6 

TABLE 2: Identified and Computed Modal 
Parameters (F=forward mode, B=back mode) 

de Identified Computed 

ron (Hz) S ron(Hz) S 
II : 70.1 0.25 73.3 0.41 

II } 66.8 0.17 67.3 0.40 

.. 94.0 93 .1 93 .1 0.49 

I 9l.7 0.17 92.0 0.49 

CONCLUSION 
An AMB system is developed, which is equipped with 
two sets of piezoelectric force transducers, can 
measure in-plane forces generated by a pair of 
magnetic bearings. Using measured sinusoidal force, 
displacement and voltage signals, we can easily 
identify the current and position stiffnesses. Using the 
dFRFs defined between the excitation and 
displacement signals, the system modal properties can 
also be effectively identified. The comparison between 
the computed and identified properties suggests that 
unmodeled system properties or inaccurate modelling 
may lead to poor estimation of system parameters such 
as position and current stiffnesses and system modal 
dampings. 
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