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ABSTRACT 
System identification allows fast and accurate modelling 
or magnetic bearing systems. It makes static measure
ment of bearing characteristics and modal analysis of 
flexible rotors obsolete. This eliminates the need for the 
rd ated expensive measurement equipment, and results 
ill a substantial reduction in the time required for com
missioning. Moreover, the achieved control performance 
l:<In be improved. 
Ldentification of magnetic bearings must be tailored to 
the controller. Strategies for this are proposed. Experi
mental results for various set-ups are presented. 

1. INTRODUCTION 

Motivation 
A parametric dynamic model of the magnetic bearing 
~ystem is required for the controller design. If the plant 
dynamics are not exactly known, the controller has to be 
robust with respect to this plant uncertainty, or else it 
may fail to meet the performance requirements with the 
real plant. However, it is well known [1] that higher 
controller performance can be achieved if less robustness 
is required - in other words, if the plant is more exactly 
known. 
Presently, the dynamic plant model is established based 
lIpon theoretical knowledge. For 
instance, the bearing parameters 

PC 

with this method. Examples for this are sensor and 
amplifier dynamics, eddy current and hysteresis effects. 
Another example is the reduction of the rotor's natural 
frequencies with rotating speed, as the shrink fits are 
loosened under the influence of centrifugal forces. 

Goals 
Identification of the plant dynamics between controller 
output and controller input gives an accurate model of 
the complete plant, incorporating all these effects. Thus, 
it allows 
• to circumvent time consuming and expensive modal 

analysis and static force measurements at initial set
up 

• to improve the accuracy of the plant input-output 
model 

• to achieve better controller performance 
• to give a better insight into the physical behaviour 

of the AMB system 

2. MEASUREMENT TOOLS 

Today's AMB systems are often controlled by means of 
a digital controller board. This is usually connected to a 
host PC for development and controller design. For our 
controller boards, we have designed a comfortable inter-

x 

[J ital contlOlier board Plant: AMB+Rotor 

ki and ks are computed from ge
ometry, winding number, nomi
nal air gap and bias current. The 
dynamics of flexible rotors are 
computed using FE modelling. 
This theoretical model is often ad
justed by static measurement of 
the bearing parameters and by a 
modal analysis of the rotor [2]. 
Both measurements are quite 
cumbersome. Moreover, many 
phenomena cannot be assessed 

FIGURE 1: Measurement set-up for identification of AMB systems. 
Different signals can be chosen to be plant's inputs and outputs. 
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fac(' from the standard mathematics package MATLAB 
13J. This allows to read and write all variables in the 
program of the digital controller. The sine wave genera
tor used for excitation of the plant is programmed on the 
controller processor. Data acquisition (i. c.. recording 
the time history of certain signals) is done with the con
troller board as well. These data are transferred to the PC 
for computation of transfer function, identification, and 
controller design. Excitation, data acquisition and data 
transfer can be controlled from within MATLAB. Thus, 
the measurements needed for identification can be done 
without any additional hardware. The whole set-up is 
shown in figure 1. 
The proposed algorithms are based on frequency re
sponse function (FRF) measurement. Sine wave excita
tion yields an excellent signal-to-noise ratio in the data 
acquisition. Based on these FRF data, a parametric 
model (rational transfer function) is constructed. 

3. LEAST SQUARES ALGORITHMS 

In this section, two methods for modelling the open
loop behaviour of an AMB plant are presented. In sec
tion 4 we will show that it is rather the closed-loop be
haviour that must be approximated by identification. 
However, the methods of section 4 use the same frame
work as those in section 3. 
For the sake of simplicity, we treat the SISO case only 
in this paper. The results, however, can be applied to 
MIMO problems as well. Furthermore, we do not go 
into details about the distinctions between continuous 
and time-discrete identification. 

3.1. Preliminaries 
Let denote 
N the number of frequency points at which the 

plant transfer function has been measured 

wk with k = I .. N 
the measurement frequencies 

p(s=jWd 
the measured plant transfer function at frequency 
wk 

P(s) = B(s) 
A(s) 

(3.1.1) 

the identified, parametric transfer function in the 
usual form of a rational polynomial fraction 

B(s) = bmsm + bm_lsm- l + ... + bo 
A(s) = sn + an_tsn-t + ... + ao 

the nominator and denominator polynomials of 
p 

m, n the degrees of the nominator and denominator 
polynomials. We assume that we know m and n 
a priori. This assumption is reasonable in the 
case of AMB systems. 

, 
if=[bm ... bo : an-l ao] 

the vector of the coefficients of B(s) and A(s). 

Identification has the goal to find the coefficients ai. /I, 

of the polynomials A(s), B(s) such that P is approxi 

mated by P in some sense. To be more specific, WI' 

define the error 

(3,1.:' I 

This error can be defined in different ways, as we will 
see below. With least squares algorithms, the identifir;1 
tion criterion that has to be minimised is defined by tilt' 
2-norm of e: We look for 

if' = argmin(llelb) = argmin~fc/ 
19 iJ k=l 

(3.UI 

3.2. Minimising the absolute model error 
Minimising the absolute error means solving (3.1.1) 
with 

-(. ) BUwk ) 
ek = P }Wk - (. ) 

A }Wk 
(3.2.1 ) 

This involves a non-linear optimisation. Multiplyilll: 
the right hand side of (3.2.1) with A(s), i.c., choosing 

ck = AUwk )· pUwk ) - BUwk ) (3.2 .. ') 

instead makes the problem (3.1.3) linear in the parana' 
ters, but does not yield the correct solution of the ori)',i 
nal problem: A( s) is a weighting to the problem (3. U I 

The fit is improved at frequencies where A(jw) is larg!'. 
and deteriorated where A(jw) is small. 
Sanathanan and Koerner f4] have proposed an iteralivl' 

parametric 
plant model 

1\ 
p 

end 

no 

FIGURE 2: Iterative identification scheme 
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algorithm to obviate this shortcoming (ef figurwe 2). 
They suggest to use 

ek.i = (Ai UWk)' pUWk) - BiUWk))' WiUWk) (3 .2.3) 

Thereby, the weight Wi used for the i-th iteration is 
chosen as 

. 1 
Wi (JWk ) = A (J'W) . 

,-I k 

(3.2.4) 

For the first iteration, WI can be chosen unity for all 
frequencies. 
This algorithm removes undesired weightings whilst 
preserving linearity in the parameters for (3.1.3). The 
algorithm converged always in our applications. 
However, convergence cannot be proved. The result can 
be refined using numerical optimisation [5]. 

3.3. Minimising the relative model error 
Magnetic bearing systems have a roll-off of 40 dB per 
decade with current control, and even 60 dB per decade 
with voltage control [6,7]. Minimising the absolute 
error therefore yields poor results at high frequencies. 
Minimising the relative error gives better approxima
tions. This means solving (3.1.3) with 

pUwk) - BUwk)/ A(jwk) 
ek = P(jwk) 

(3.3.1) 

The method explained above can easily be applied to 
t.his error criterion by choosing 

(3.3.2) 

3.4. Identification of ki and ks using 
a priori - knowledge on the rotor dynamics 
If the dynamic behaviour PR(s)of the rotor is known 
(e.g., from a modal analysis), it is possible to compute 
kj and ks from FRF measurement and this a priori 
knowledge [8]. We then know to be 
, k· 
P(s) = ' (effigure3). 

l-ks ' PR (s) 

Controller C(5) 

Rotor 
Djnamics 

PR (5) 

(FEM model) 

x 

FIGURE 3: Identification of ki and ks with 
known rotor dynamic model PReS) 

Measurements at a few low frequencies, along with 
knowledge of the rigid body dynamics of the rotor, are 
sufficient to determine ki and ks. 

3.5. Experimental results 
Minimisation of the relative model error (section 3.3) 
without using a priori knowledge has been applied to 
an AMB test stand with a flexible rotor. The MIMO 
AMB plant has been separated into two SISO plants: 

[PI p2]=[~a+~b ~a-~b], 
la + Ib la -Ib 

where index a and b refer to the two bearings. This sepa
ration could be done because the rotor was symmetric. 
The results have been obtained for the plant PI which 
describes the translation mode and the first, third, ... 
flexible modes. 
The result is shown in figure 4. The poles of the trans
fer function are estimated well already at the first itera
tion step, while the zeros must be improved in the 
second step using (3.3.2). A dead time was introduced to 
account mainly for amplifier dynamics. The plant order 
of 6 (three modes) was determined a priori. 
A comparison of measured FRF and the FRF of the 
identified model shows that the dynamics of the rotor as 
well as the bearing parameters can be identified accu
rately. We can thus say that measurement of the bearing 
characteristics as well as modal analysis have become 
obsolete thanks to identification. 

The method described in section 3.4 has been applied to 
the same plant. The rotor model was taken from FE cal
culations and included the translation mode and the first 
flexural mode. The fit achieved about the same precision 
as the one in Figure 4. 
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FIGURE 4: Identification of an AMB system with 
flexible rotor without a priori knowledge. Current 
control. 
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4. IDENTIFICATION FOR CONTROL 

4.1. Concept and algorithm 
In section 3, we have presented a method for minimis
ing the absolute or the relative model error. Absolute 
and relative model errors are "open-loop properties" of 
the model. However, a model's capability of reproducing 
well the plant's open loop characteristics does not neces
sarily imply its suitability for controller design. This 
follows from basic results in robust control theory. 

Let denote 

P(s) the nominal plant (parametric model obtained 
from identification) 

P( s) the true plant 

P( s) some arbitrary plant 

C a controller that stabilises P 

!J.=P-P 
the additive model error 

SUw) = A 1 
1 + pUw)· CUw) 

the designed sensitivity function 

SUw) = _ 1 
1 + pUw)· CUw) 

the achieved sensitivity function 

Rohust stahility. C(s) will stabilise all plants pes) 
for which the following inequality holds (small gain 
condition): 

IpUw) -PUw)1 < I . I A. I' '\fw C(JW) . S(JW) 
1) 

Conversely, for arbitrarily small DUW) there are plants 

P(s) with 

IpUw) - PUw)1 < I . 1 A. 1+ DUw), '\f w 
C(Jw) . S(Jw) 

which are not stabilised by C. Therefore, an arbitrarily 

small model error !J. (at a frequency where Ic. sl is large) 

can lead to instability. 
In other words: The controller determines to a large ex
tent how large a model error !J. can be accepted at a cer
tain frequency. This means that not only the controller 
design depends on the model, but also the modelling 
depends on the controller. This gives rise to an iterative 
scheme, as proposed by [5,9]: Modelling and identifica
tion are no longer be considered as two independent 
problems, but rather as one joint problem. Inserting 

1) To be exact, this holds if P and P have the same 
number of unstable zeros. 

figure 3 into this scheme, we like to state it as shown 
in figure 5. (This iterative scheme must be kept in mi nd 
also if different identification methods are used!) 
There are different strategies for identification in view ()/ 
this fact. We just mention two of them. 

Sensitivity function as weighting function. 
We certainly need an accurate model where the sensiti v 
ity function is large. Therefore we can minimise til (" 
(absolute or relative) error weighted by the sensitivi1y 
function, 

(4.l.la,h ) 

by choosing 

Si-l Si-l W· =-- or W· =---_ 
I Ai- 1 I Ai-I. P 

(4.1.2a,h ) 

S can thereby be the designed or the achieved sensitivi l I 

function. . 

I FRF ID'" I 
t - - - - -p- - - - - - - - - - - - - - - - , 

compute new 
parametric weighting 
plant model function 

/I. W 
P 

, 
6, 

no 15' 

no 

end 

,;;, 
~I 
~, -, 

FIGURE 5: Iterative scheme: Joint design of 
identification and control 
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Achieved performance. The objective of the con
lroller design for AMB systems is disturbance attenua
I ion: The effect of disturbance inputs (noise, disturbance 
rorces) on system outputs (displacements, coil currents, 
and coil voltages) have to be small. The related closed
loop transfer functions (from disturbance inputs to sys
lem outputs) must be kept small in some sense. As 
Ihey all contain the sensitivity function S as a common 
ractor, it is a valid approach to define the controller per
formance f by some norm of the weighted sensitivity 
runction [1,7]: 

.I( p,C) = Ilwp ' S(p, c)t, or 

.I(p,C) = Ilwp ' s(p, cl 
(4.1.3) 

2) (4.1.4) 

The weighting W p is thereby a design parameter of the 
·ontroller. A reasonable goal for the identification is 

Ihen to create a plant model P such that the achieved 
Ileifonnance, 

.f ilch = f( P, C) 
is as close as possible to the designed performance, 

J'les=f(p,C) 

This can be achieved by choosing the weighted error in 
Ihe sensitivity function as an identification criterion: 

tk = WI' (Jwk)· (S(JWk) - S(Jwk)) (4.1.5) 

which is equal to 

(4.1.6) 

From this it follows that we can apply (3.2.3, 3.1.3) 
with 

(4.1.7) 

4.2. Experimental results with a self-sensing 
hearing system 
Plant description. With the self-sensing bearing, 
I he coil currents are used as measurements while the coil 
voltages are used as command signals [6,7]. The advan
lage of this configuration lies in the fact that no posi
I ion sensor is needed. 
I 'or a system with two opposing coils and one degree of 
rreedom, the linearised system equations are 

2) Note that with all controller design methods, it is a 
primary goal to keep the sensitivity function small: 
This goal is explicitely formulated in methods such 
as Hoo or LQGIL TR. With pole placement, it has to 

be achieved by choosing appropriate pole locations; 
with LQG without loop transfer recovery by select
ing appropriate weighting matrices. 

1 

o 
-2kjL 

2k~/ml'[:l+[ ~ l·u 
-R/L i l/L 

(4.2.1) 

Thereby, L denotes the total inductance (including stray 
inductance), and R the copper resistance of the coils. 
The nominal air gap is 3.5 mm. 
It is important to note that the system is both non-min
imum phase and unstable and therefore really difficult to 
control. In fact, the unstable pole and the unstable zero 
are even quite close to each other in our experimental 
system. The poles and zeros (as found by identification) 
are at 

p 1,2 = - 48.4±17.1 rad/s, P3 = + 60.0 rad/s 
Zj = - 91.7 rad/s, Z2 = + 76.15 rad/s 

Experiment. The joint identification/controller design 
scheme, as shown in figure 5, has been applied to this 
plant. The controller was thereby designed by the LQG 
method. The steps of the iteration have been chosen in 
the following way: 
• Iteration 1, Start-up: Identification of the plant by 

minimising the relative error of the transfer function; 
controller design based on the resulting model 

• Iterations 2 .. 22: Identification using (4.1.2a) or 
(4.1.7), with Wp = unity. New controllers based on 
the new identification results were designed at itera
tions 1, 2, 4, 7, 10, 13, 16, 19, and 22. 

Results. 
• In the first identification step, the plant can be iden

tified with a relative model error smaller than 10% 
for all frequencies. All the same, the controller C 1 
that has been designed on the basis of the model 

from step 1 does not stabilise P. This can be pre

dicted by computing the Nyquist curve C1 P . 
• Between the controller design steps, the identifica

tion procedure converges. This can be seen from the 
flat parts in the graph of the error criterion, figure 6. 

• Refined modelling allows for an improved controller 
performance (4.1.4) at each controller design step. 
This is shown in figure 7. 

• The resulting controller has been implemented and 
tested with the real plant. Although the sensitivity 
function is still very high (figure 8), the designed 
controller stabilises the plant well without further 
tuning. Figure 9 shows the response of the AMB 
system with the designed controller to a force 
impulse. 

5. CONCLUSIONS 

Methods of system identification have been successfully 
applied to various AMB systems. Results have been 
presented for current controlled AMBs with a flexible ro
tor, and for a self-sensing AMB system. Modelling the 
open-loop characteristics is sufficient in some cases. In 
general, however, an iterative scheme of identification 
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and controller design, as outlined in this paper, yields 
better results. 
On the example of the self-sensing bearing we have 
demonstrated that a controller design for a "difficult" 
plant with a high resulting sensitivity function worked 
without further tuning. Both the designed and the 
achieved performance could be improved thanks to ap
propriate modelling. Both controller design and identifi
cation can still be improved. Further, the proposed 
scheme will have to be applied to other AMB configura
tions . 
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