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ABSTRACT 
A program for modelling elastic rotor dynamics in 
ac tive magnetic bearings has been made for PC
Matlab. The kinetic and potential energy integrals are 
diskretized and an equation of motion is obtained in a 
matrix form. Active magnetic bearing dynamics can be 
included in the matrix equation. From this matrix form 
(he critical speeds, eigenfrequencies, mode shapes, 
unbalance responses and frequency responses can be 
calculated. A low order model for control system 
design purposes can also be calculated by modal 
'lIlalysis. The validity of the model is studied by 
comparing the calculated eigenfrequencies and 
cigenmodes with the analytic solutions of the 
Timoshenko beam equation. The program is also 
verified by testing real high speed rotors. The 
measurements are in a good agreement with the 
calculations. 

INTRODUCTION 
When designing high-speed machines an accurate 
prediction of the first critical speed of the rotor is 
needed, because in most cases we want to operate 
below the first critical speed. If, however, some critical 
speeds have to be passed, the corresponding eigen
modes have to be included in to the system model to 
ensure enough damping at critical speeds. When active 
magnetic bearings are used it is also necessary to 
ensure the stability of the first bending modes when the 
rotational speed is below the first critical speed. 
Otherwise, active magnetic bearings may cause 
troublesome ringing problems. Material damping will 
stabilize the eigenmodes which are far above the 
bandwidth of the active magnetic bearings. 
Exact and reliable calculation of the eigenfrequencies 
and mode shapes of a complex rotor geometry 

demands three-dimensional finite element method. 
However, this method needs quite a lot of computing 
power, and using different programs in different tasks 
is trenuous. Besides, the rotor geometry used in high
speed technology is so simple that good results can be 
achieved by using a simpler method. 
Our goal in the AMB design is to do all the modelling, 
control system design and analysis in a low cost 
personal computer. Matlab program with Simulink and 
different kinds of toolboxes provides an ideal 
environment for the AMB design. So, we decided to 
make also the programs for calculating the elastic rotor 
dynamics for Matlab. Actually, only a program that 
calculates a couple of matrixes from the rotor geo
metry had to be made. The rest of the operations, like 
eigenvalue and eigenvector computing is done with 
the powerful matrix handling functions of Matlab. 

THEORY 
By assuming that under deformations the rotor cross
sections remain planes, we can write the kinetic and 
potential energy of the rotor as integrals over the whole 
rotor length. Of course, if the rotor has large disks, this 
assumption of planes remaining planes does not hold, 
and results may be erroneous. 
N diskretization points with six diskretization variab
les at each point are tied to the rotor centereurve. 
These variables define the shape of the rotor at the 
diskretization points. Between these points the rotor 
shape is approximated by third-order polynomials. The 
energy integrals can be calculated in terms of these 
variables and expressed in a matrix form. From these 
matrix forms the equation of motion is obtained 
according to Lagrangian mechanics. 
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11(' ) and v(z) are the displacements of the rotor centre 
curve at position z in the directions of X- and Y-axis of 
an inertial frame. Because of the shear deformation, 
the tangent to the rotor centre curve differs from the 
normal of the rotor cross-section.aiz) and ay(z) 
define the rotation of the cross-section around the X 
and Y axis. cpiz) and cpy(z) are the shear angles. 

The kinetic energy of the rotor is [1] 

T = ~ 1 {m[ ( ~~ r + ( ~~r ] + 

h[( a~,x r +( a~,' )} 

(1) 

(2) 

where Zo and Zj are the Z-coordinates of the rotor ends, 
m is the rotor mass per unit lengt, jx is the inertial 
moment around X-axis per unit length (jy=jx)' jz is the 
inertial moment around Z-axis per unit length and lz is 
the total moment of inertia around the Z-axis . .0 is the 
rotational speed. The fourth row presents the kinetic 
energy with the rotation. If the rotational speed is 
supposed to be constant, this term is also constant and 
does not contribute to the equation of motion. The 
kinetic energy associated with the unbalance 
distribution is 

ZI[Sin{f3)]T [COs{y) sin{y) ][it] 
Tu = -.0 f U . dz (3) 

Zo cos{f3) sin{y) -cos{y) v 

where f3 is the rotor rotation angle (.0 = ~), U is the 

unbalance per unit length and } is the angle defining 
the direction of the unbalance. The potential energy 
associated with the deformation is [1] 

VD =t 1 H( a~x r +( a;,' )} 
(4) 

ICAG[ cp~ + cp~ J} dz 

where E is the modulus of elasticity (about 210 OPa 1111 

steel), and EI is the flexural rigidity of the beam (I II 

*0/4 for a homogenous circular cross-section). A is I IIl 
cross-sectional area, G is the shear modulus III 

elasticity (G=O,5*EI(1+v) where Poisson's ratio v""O.\ 
for steel). Slighly different values for the constanl II 

has been proposed in the litterature. I have used K=O,'j 

The gravitational potential energy is 

VG = J mgv dz 

Zo 

(.')) 

The gravitational force is supposed to be in tl H' 
direction of negative Y-axis. 
High-speed rotors are relatively thick when compan:d 
with the rotor length. Therefore, the shear deformation 
is also included in the model. The solutions convcrg' · 
to the well known Timoshenko beam equation 121. 
when the number of diskretization points is increased . 
If the shear deformation is neglected (second row in 
(4)), but the rotational inertia of the rotor cross-section.'> 
is included, the solutions converge to the solutions oj 
the Rayleigh beam equation. If also the rotational 
inertia is neglected (second line in (2)), the solutions 
converge to the solutions of the Euler beam equation, 
The Euler- and Rayleigh beam equations give slighly 
too high eigenfrequencies, and the error increases. 
when the diameter-length-ratio is increased. Til' 
relative error is bigger for higher order eigcn
frequencies. In Figure I this error is drawn as a 
function of the diameter-length-ratio for a cylindrica l 
rotor. 
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FIGURE 1: Errors in the first and second 
eigenfrequencies calculated from the Euler (E) and 

Rayleygh (R) beam equations when compared with the 
solution of the Timoshenko beam equation. 
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Allhoug the eigenfrequencies vary quite a lot, the 
Illode shapes are very similar. This is also true for more 
("lHllplex rotor geometries. 
Now we tie N diskretization points to the rotor axis. 
I'he shape of the rotor is approximated by 6*N 
v,u·iables in the diskretization points. These variables 
li re collected to a vector q 

Between two successive diskretization points u and v 
arc supposed to be third-order polynomials of z. Shear 
angles cp are supposed to vary linearly between the 
diskretization points. With these assumptions the 
integrals (2) ... (5) can be calculated in terms of the 
vector q 

1 . T . 1!2. TG 
Tq = 2 q Mq + 2 q q 

Tuq = -.Q[ sin(f3)U; - cos(f3)u;]q 

1 TK VDq =2 q q 

VGq =Flq 

(7) 

From these matrix forms the equation of motion is 
obtained according to Lagrangian mechanics 

(8) 

where F is the generalized force in coordinates q. By 
substituting (7) into (8) we get the equation of motion 
for an elastic rotor: 

Mij+!2Gq+Kq = BFI 

+FG 

+.Q2[sin{f3)Us +cos(f3)Uc ] (9) 

p= Cpq 

Vector p contains the rotor displacements in the gap 
sensor positions and AMB reaction positions, because 
these positions are also needed to calculate the AMB 
reactions. lis a vector of forces. Matrixes M, G, K, BF> 
F G and Cp are calculated from the rotor geometry, the 
positions of the AMB reactions and positions of the 
gap sensors. Unbalance vectors U may be 
approximated by locating realistic unbalance point 
masses along the rotor. What is realistic is found out by 
experience. The material damping is neglected from 
this model. For steel the material damping is very low, 
but it should be kept in mind, because above the first 

critical speed the material damping may cause 
instability. The material damping may also stabilize a 
mode, which is predicted to be slighly unstable. 
To equation (9) the AMB dynamics can easily be 
included in a state space form 

i = AAMB x + BAMB P 

I = C AMB X + D AMB P 
(10) 

Eqs. (9) and (10) may be combined in a straightforward 
manner to a same state space form system equation. A 
low order model for control system design and 
simulation purposes may be constructed by diago
nalising (9) in the eigenvector base. 

VERIFYING THE MODEL 
The first test for the program was to compare the 
results with the analytic solutions of the Timoshenko 
beam equation. AIm long 0,2 m diameter cylinder 
was used. The mass density was 7800 kg/m3, modulus 
of elasticity 210 GPa, and Poisson's ratio 0,3. The first 
four eigenfrequencies for a nonrotating shaft calculated 
analytically are 842 Hz, 2036 Hz, 3476 Hz and 5007 
Hz. N equally distributed diskretization points were 
used, where N was varied. The last points were at the 
shaft ends. In Figure 2 the relative accuracy of the first 
four eigenfrequencies compared with analytic solutions 
is plotted as a function of the number of diskretization 
points. 
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FIGURE 2: Relative accuracy as a function of the 
number of diskretization points. 

The more eigenfrequencies we want to calculate, the 
more points we need. 
Next test was a solid shaft specially made for testing 
these eigenfrequency calculations. The shaft geometry, 
and first two eigenmodes are plotted in Figure 3. The 
following material constants are used in the 
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calculations: E=21O GPa, p=7800 kg/m3 and \1=0,3. 
'rhe corner points of the rotor are listed in Table l. 

TABLE 1: Dimensions of the test shaft 

Z-coordinate radius (mm) 
(mm) 

0 17 
83 17 
134 30,5 
158 30,5 
158 35 
318 35 
318 30,5 
342 30,5 
393 17 

405,5 17 

In Table 2 the first two eigenfrequencies of the shaft 
are calculated with different kinds of simplifications. 
Option 1- rotary inertia and shear deformation not 
included. Option 2- shear deformation not included and 
option 3- rotary inertia and shear deformation included. 
15 equally distributed diskretization points were used. 
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FIGURE 3: The geometry of the test shaft, and two 
first eigenmodes calculated with option 3 (solid line) 

and option 1 (dotted line). 

TABLE 2: First two eigenfrequencies of the test shaft 
calculated with different kind of simplifications 

measured option 1 option 2 option 3 
2081 Hz 2194 Hz 2147 Hz 2076Hz 

(+5,4 %) (+3,2 %) (-0,2 %) 

4225 Hz 4752 Hz 4485 Hz 4227 Hz 
(+12,4 %) (+6,1 %) (+0,06 %) 

The diameter-length-ratio of the shaft is 0.17, so the 
results in Table 2 are in a good agreement with the 

Figure l. Although the eigenfrequencies vary gui ll' ( 
lot, the mode shapes are almost similar. Figll(l ' 
includes the mode shapes plotted with options 1 and \ 
With real high-speed rotors the lamination sheets in ti l' 
active magnetic bearings cause problems for eigl' lI 
frequency calculations. When the mass density of 11 11 

laminations is supposed to be the same as for steel. 111 111 

the modulus of elasticity is supposed to be zero, 11 11 

results are close to the measured values. This is tCSIf'( \ 

with a real high-speed rotor which geometry and tllf cl, 

first eigenmodes are shown in Figure 4 . 
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FIGURE 4: High-speed rotor with lamination sheets. 
Eigenmodes calculated supposing Elam=O. 

TABLE 3: Eigenfrequencies of a real high-speed rotor 

measured Elam=O Elam=210 
GPa 

1679 Hz 1710 Hz 2217 Hz 
(+1,8 %) (+32 %) 

2970 Hz 2886 Hz 3397 Hz 
(-2,8 %) (+14 %) 

4125 Hz 4172 Hz 4888 Hz 
(+1,1 %) (+18 %) 

All the eigenfrequencies above are calculated at zero 
rotational speed. Equation (9) predicts that the 
eigenmodes of the nonrotating rotor split in to it 

forward rotating mode (same direction as rotor) and a 
backward rotating mode. The eigenfrequency of the 
forward mode should increase, and the frequency of 
the backward mode should decrease. This phenomenon 
is measured with a 36 kW (shaft power), 50000 RPM 
air compressor. The machine has conical active mag
netic bearings. The rotor geometry, and the first 
eigenmode are shown in Figure 5. 
The measurement was done by supplying noise, the 
power of which was concentrated near 1000 Hz to 
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PIIW 'f amplifier of the AMB 2. A spectrum analysis by 
II digital spectrum analyzer was made for a 
" ,placement signal of the AMB 1. The two peaks in 
the power spectrum were very clear and sharp and 

l're easily measurable. The results are plotted in 
I' jl:ure 6. 
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FIGURE 5: High-speed air compressor with conical 
active magnetic bearings 
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FIGURE 6: Splitting of the first eigenmode to the 
forward and backward modes. Calculated curves and 

measured points, 

The calculations are made in free-free supports, 
because the effect of the AMB dynamics is negligible 
in this case. The eigenfrequencies of the 1st backward 
mode are very close to the calculated curve, whereas 
the measured eigenfrequencies of the forward mode are 
clearly higher than the calculated ones. This error may 
be due to modelling errors in compressor wheel. The 
eigenfrequency at zero speed varied about 30 Hz 
depending on the rotor temperature. 
The calculation time was reasonable. After the rotor 
geometry of the air compressor was given, the 
calculation of the matrices M, G and K took about four 
minutes, when 15 diskretization points were used. 
After the matrixes had been calculated, the calculation 
of the eigenfrequencies and mode shapes took about 
half a minute, and the calculation of the curves at 
Figure 6 took about one minute. An 50 MHz 486 com
puter was used with Matlab version 4.0. 

CONCLUSIONS 
A kind of "one dimensional finite element method" is 
programmed to PC-Matlab to calculate elastic rotor 
dynamics. The measurements show that the accuracy 
of this method is higb enougb for simple rotor 
geometries, as high-speed rotors are. The computing 
time is also reasonable. The calculations show also that 
the shear deformation and rotary inertia of the rotor 
cross-sections should be taken into account. 
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