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ABSTRACT 
This contribution is an attempt to spur interest in 
t.he application of neural networks in actively sup
ported rotors. 

After some introductory remarks non-stationary 
rotordynamics is reviewed in short, restricted to the 
.J cffcott Rotor (section 2) . Section 3 than gives an 
overview of a simple neural network trained by the 
backpropagation procedure. The latter is then uti
lized in section 4 to avoid suspended stays of the 
non-stationary rotor. Section 5 outlines future im
provements, realizations and other possible applica
tions. A short summary concludes the contribution. 

1 INTRODUCTION 
Rotatory Machinery is supposed to accelerate and 
deaccelerate through critical speeds with respect to 
bending. The acceleration behavior of the rotor then 
depends on the applied drive torque. A description 
of this behavior is given by a known set of nonlinear 
differential equations for the Jeffcott Rotor (elastic 
shaft with centered dise), being the most simple ro
tor. 

By using modal analysis, the partial differential 
equations valid for a rotor with a continuous mass 
distribution can be reduced to a set of non-linear or
dinary differential equations. These equations, each 
of which applies to one eigenmode, have the same 
structure as those for the Jeffcott Rotor. For this 
we restrict considerations heneeforth to the Jeffcott 
Rotor and refer to [1] for a more detailed discussion 
on mass distributed rotors. 

Active Magnetic Bearings (AMB) supporting an 
accelerating rotor can be utilized to overcome crit-

ical behavior specifically so called suspended stays, 
which are due to a laek of drive torque. Since the 
occurrence of a suspended stay depends also on the 
qualities of the rotor system which are greatly deter
mined by AMBs, these have the potential to elimi
nate stalling of rotors. Inhere we use a neural net
work approach to adapt the qualities of the rotor 
system in order to cope with suspended stays. 

2 NON-STATIONARY ROTOR 

The governing equations for the Jeffcott Rotor (Fig
ure 1) can be found in most textbooks on Dynamics 
of Rotors and are normalized inhere for further refer
ence. Equations (1) depict the complete set without 
any assumptions like a given acceleration or neglect
ing the non-linear coupling between the bending de
grees of freedom and those of torsion. The latter 
leading to the well-known ordinary differential equa
tions for the Jeffcott Rotor. 

r~ + 2Dr~ + rc 
cp" - ~ K2(r c exp( icp) + Tc exp( -icp)) 

rcEC,i=H 

, where 

exp(icp) 
T 

(1) 
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re indicates the displacement of the disc's COM, cp 
is the angle turned through by the disc and T is the 
drive torque resulting from the applied torque M, 
all normalized according to the above. Parameters 
D and K constitute of the stiffness c and structural 
damping d of the rotor system, mass m and radius 
of gyration k of the disc. The prime I denotes the 
derivative with respect to the normalized time r. 

FIGURE 1 : Non-Stationary Jeffcott Rotor 

These and further equations have been studied by 
several authors namely for the sake of solution meth
ods and stability analysis. Although straightforward 
solving of eq. (1) is unknown, e.g. [1] and [2] de
scribe a solution by successive approximation as well 
as calculating the minimum required torque without 
clamping which will avoid a suspended stay. Acceler-

at ion behavior of the rotor is sensitive to parall wl..-, 
changes as can be recognized in Figure 2 which sholV I! 
speed cpl vs. time r. With D = 0.165 a suspellol ,·,1 
stay occurs while switching to D = 0.17 t.he rotor II. 
celerates further. Figure 3 depicts the displacen 11'11 1 

Ire I vs. cpl. With the appropriate D displacemeJli. 01 i 
minishes as one expects for a flexible rotor operat.ill l\ 
beyond the first bending critical speed. 
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FIGURE 2: cpl vs. r with T = 0.03, K = 0.1411 
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FIGURE 3: Irel vs. cpl with T = 0.03, K = 0.141 /1 

3 NEURAL COMPUTATION 
The neural network approach stems from the field of 
biology respectively neurosciences and was originally 
conceived as a model for brain tissue. Nevertheles:-; 
the results from this can be applied to general dy
namical systems as shown by [3]. 

We like to show one of the many possible applica
tions of neural networks in the field of dynamics of 
rotors specifically when active supports are utilized . 
For this reason a brief outline of topics from neural 



Fourth International Symposium on Magnetic Bearings, August 1994, ETH Zurich 265 

IIdworks used in the next section is stated below. 
1"lI r further reference e.g. [4] can be used. 

Neural networks estimate functions from sample 
d;Lta. The basic problem definition for a neural net
work reformulated from [5] is this: 

Store a set of patterns, consisting of in
put and output values, in such a way that 
when presented with a new pattern the net
work responds by producing whichever one 
of the stored patterns most closely resem
bles the new pattern 

The structure of a neural network is depicted by Fig
IIrc 4. 

FIGURE 4 : Structure of a network 

When a pattern J.L is applied at the input, that is p~, 
the hidden unit receives a net input1 

hi = E WjkP~ and produces Vi' = gl(h'j) . 
k 

Output unit i thus receives hr = E Wij Vi' . 
j 

T he final output is then 

or = g2(hn = g2(E Wijg1(E WjkP~)) . (2) 
j k 

or in general deviates from the desired output 
pattern or target rt. By adjusting weights Wjk and 

1 g( .) denotes a function, typically sigmoid 

Wij Or can be shifted to Tt, which can be under
stood as learning. Updating the weights is done by 
the so called backpropagation algorithm, which re
lies on gradient descent rules to minimize the sum
squared error2 

E [Wjk, Wij] = ~ E(Tt - 0;)2. 
J1,i 

The backpropagation rule gives3 

oE E LlW" = -1]-- = 1] 6iI V!' 
'} oW" • } 

'} jJ 

(3) 

and 

(4) 

where 81 = g~(hj) E Wij 8f, 
i 

Once increments Ll Wij and Ll Wj k are effective, 
the rule is repeatedly applied until an error goal or 
a maximum number of cycles has been reached. 1] 

serves as a tuning factor to improve convergence and 
is referred to as learning rate . The activation func
tion gl and g2 must be differentiable and should sat
urate at both sides. Thus, so called sigmoid type 
functions like tanh( .) are usually applied . 

One of the drawbacks of the back propagation is its 
slowness due to the gradient descent. More sophis
ticated algorithms than gradient descent exist but 
these induce more complexity. A simpler way for im
proving effectiveness is the addition of a momentum, 
that is part of the previous increments are added: 

oE 
LlWij(t + 1) = -1] OWij + aLlWij(t) (5) 

oE 
LlWjk(t + 1) = -1]-!)- + aLlWjk(t) 

VWjk 
(6) 

a 1S the momentum parameter in the range of 
(0,1). 

4 AVOIDING A SUSPENDED STAY 
In section 2 it was shown that a rotor system is sen
sitive to parameter changes in regard to occurrences 
of suspended stays. By investigation of the non
stationary equations of the Jeffcott-Rotor, eq. (1), 
it is obvious that parameter D depends both on the 

2summed over /l. and i 
31 denotes derivative with respect to Wij and Wjk 
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sys tem stiffness (c) and damping (d). Thus, if a rotor 
is actively supported by Magnetic Bearings switch
ing c and d respectively D can be used to overcome a 
suspended stay. Moreover, the ratio of the eccentric
ity, e, to the radius of gyration of the disc, K, greatly 
influences the acceleration. 

In regard to the above we would like to find the 
smallest D which ensures continuous acceleration. 
This is equal in meaning to evaluate the function 
Dmin = f(T, K) resulting from the constraint of 
min( <p") = 0+. Unfortunately f is analytical in
tractable. For this reason we use a neural network 
approach according to section 3 to estimate Dmin. 

The basic approach is then, first to sample a suf
ficiently large number of values from f(T, K). These 
samples are obtained by repeatedly simulating equa
tion (1) and increasing D while holding on to T and 
K until <p" becomes just larger than zero during the 
whole simulation. In this way data triples (Dmin' T, 
K) are determined . With these patterns a network 
structure according to Figure 4 is trained, where we 
just have the two inputs T and K and the single out
put Dmin . Thus, the structure in Figure 4 is re
stricted to N = 2 and R = 1. 

4.1 ESTIMATION WITH CONSTANT K 

In the simplest case K can be assumed constant, 
which reduces the network to just one input and out
put (N = R = 1). Figure 5 shows the result of es
timating Dmin with K = 0.1414. A network with 
10 (M = 10) tan-sigmoid neurons with activation 
function 

gl = tanh(hj ) + bl 

and one linear output neuron 

is used. Here biases bl and b2 are added, which are 
also updated with the rules given in equations (3) 
and (4). 

Eleven training sets (Dmin, T) lead to the output 
sets depicted in Figure 5. Training takes 59 . sec
onds on a INTEL 486/66-Processor with a final sum
squared error of E [Wjk,Wij] = 0.0011. The learning 
rate'fJ is set to 1. 

Clearly, for this rather simple problem even the 
small utilized network can succeed in reasonable 
time. This will not be the case if the network grows, 
which is mandatory to estimate more complex data 
structures. 
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FIGURE 5 : Dmin vs. T for K = 0.1414 

4.2 ESTIMATION OF Dmin = f(T, K) 
Estimating Dmin = f(T, K) is an extension to the 

previous section. Now the network has two inpu t.s 
(N = 2). The same network structure as in sectioll 
4.1 is applied, but due to the increased number or 
inputs 50 (M = 50) neurons are used. Activatioll 
functions g] and g2 are maintained according to the 
previous section. Training takes 28 minutes on a IN
TEL 486/66 Processor with the result of estimating 
the 63 training sets as depicted in Figure 6. Also, the 
evolution of the sum-squared error vs. the training 
cycles is shown in Figure 7. 

From the latter Figure it can be deduced that 
training could be stopped much earlier since the er
ror did not decrease substantially after 3000 cycles. 
After 5000 cycles the error is 0.11. During train
ing the learning rate 'fJ is adapted according to the 
progress of the error after each training cycle. This 
accelerates learning. 

The number of neurons is chosen from a trade-off. 
Although with increasing number of neurons better 
network performance can be achieved training time 
prolongs. On the other side limiting the number of 
neurons prevents the network from reaching satisfac
tory error goals. 

5 PERSPECTIVES 
The previous sections showed the possible applica
tion of the neural network approach in regard to 
adapt system qualities. Although the examples given 
can be interpreted as mere curve fitting, the advan-
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Lage of the neural approach becomes obvious when 
it is applied to a real system. As can be seen from 
I'quation (3) the weight changes ~ Wij are calculated 

,I ely from Vi' and 6r That means once lir is known 
tch ~ Wij can be calculated independently. For 

AWjk in equation (4) the same is true. This gives 
access to parallel computation. For this reason we 
will implement neural networks on a parallel com
puter which will control a magnetically supported 
flexible rotor. The basic outline of the test-bed cur
rently under construction is shown in Figure 8. The 
IItilized net structure is not optimal in that it was not 
specifically designed for the problem. So we like to 
design networks which can help to solve problems in 
regard to actively supported rotors. One of it to im
prove methods in active balancing of flexible rotors, 
whereby e.g. [6] developed a method for active bal
a.ncing which could benefit from a neural approach. 

G SUMMARY 
From the example of non-stationary rotor behavior it 
was shown that neural networks can solve problems 
in the field of control for rotordynamics. Although 
specific net design might be preferred, even an or
dinary net structure can be applied to avoid a sus
pended stay. Future work will implement networks 
on a parallel computer, such that the advantage of 
Heural networks can be exploited. 
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