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INTRODUCTION 
111l,li(: components of a magnetic gyroscope are known 
II I to be: 

,,) u magnetic field-inducing system or a system of 
"'II){lletic sources (a magnetic suspender) possessing 
11 11 axi al or a spherical symmetry; 

,,) a ball-like dynamic symmetric pherite rotor; and 
I) an automatic regulator, for varying source fields 

I II II way as to provide for a stable noncontacting 
IIlIlg llctic support to a rotor with a fixed centre of 
I II I l !"tS . 

Pot.entially high precision of such gyroscopes is 
I"L,,,,<I upon slightness of departing rotor-affecting 
III>JIIH! uts, though the same reason makes the rotor, 
'q"'" its spin-up, perform angle motions; these mo-
1"lIl~ being generally specified by initial conditions. 
1.' .. 1' normal operation of a device, it is necessary to 
"I,tain a zero value for a nutation angle and a ca
I"ll> iii Ly of regulated change of the kinetic moment 
III i"lItation with respect to a device case. To satis
Iv these conditions, regulating moments, providing 
'II"nlcd operating conditions for some finite time, 
l" lV!" to be applied to a gyroscope rotor. 

'1' .. have the regulating moments obtained, it is 
I" l'f' .. rable to employ the available conservative mo
"lI"lIts being caused by nonideal manufacture of the 
I "I" /I' and to gain a required effect through regulating 
1111" suspender field or external sources under some 
'1>C'C'ilic law. 

• This research has been done under support from the Russian 
I'; ,""dn.lion of Fundamental Researches (Project 93-01-16250) 

STRUCTURE OF MOMENTS 
In order to describe rotor's angular motions around 
a centre of mass, we use the basic equation in the 
gyroscopic science, 

and also the expressions for projections of kinetic 

momentd( onto an axis of ellipsoid of rotor inertia, 
(K . i;) = Ii Wi . 

At small departing angles a and j3 of vector K from 
the suspender symmetry axis OZ 3 (K = K(j3z 1 -

aZ2 + Z3)) ,vector's time evolutions are described 
[2] as 

(1) 

where ~' stands for projections of moment of exter
nal actions onto direction of kinetic moment (M 3) 
and in the plane (M h M 2) perpendicular to this 
moment. If a position of rotor dynamic axis OX3 

with respect to the kinetic moment K is specified 
through the nutation angle {) and through the pre
cession angle 1/J, then for angle {) we obtain 

d{) 
K dt = -[M 1 cos 1/J + M 2 sin 1/J] = M{) . (2) 

Since the external moments are slight, the mo
tion equations, upon their normalization, allow an 
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averaging of right parts with respect to the preces
sion angle 1j; and rotor's selfrotation rp. Upon per
forming these operations and upon a transition to 
r = j3 - ja and M~ = M 1 + jM 2 we shall obtain 
the following: 

(3) 

Note that if Mj = M j (r,1),K,1j;,rp), then, upon 
averaging, we have '1rI:J = '1rI:J (r, 1), K). Let us de
note MJ and mJ as MJ = ~(O,O,K,1/),rp) and 
mJ = m,'(O, 0, K) and represent Eq. (:3) as 

It is not difficult to see that finite times for chang
ing x~l) --> x~2) are possible only if, for any point on a 
3--dimension trajectory described by these equations, 
Ii does not transfer to zero. In particular, damping of 
a rotor nutation needs the condition m1?(O, 0, K) =f. ° 
to be satisfied. In general, it is possible to write 

+ L Mjpq(r, 1), K) cos (Dpq7 + a'jpq) , 
gq 

and, accordingly, we obtain 

MJ = M jO(O, 0, K) 

+ L Mjpq(O, 0, K) COS(Dpq7 + a'jpq) , 
gq 

where Dpq = p1j;. + qrp •. 

( 4) 

(5) 

From it, it follows that if a regulating moment 
is generated by employing the component Mjpq , 
then the interaction parameters (e.g., rotational fre
quences of the field or its amplitudes, directions, etc) 
should be modulated with the frequency Dpq • 

APPLICATION OF MAGNETIC 
GYROSCOPES 
Now we will demonstrate how regulating moments 
are obtained via interaction between a rotor and a 
suspender field or an external field, when these in
teractions are stipulated by rotor's surface that is 
different from that of an ideal sphere. 

If the surface is axially symmetric, then energy of 
conservative interaction of aspheric rotor with axially 

symmetric magnetic field can be represented through 
a sum of Legendre polynomials [3]: 

n 

where ko and .so are unit vectors of symmetry axes 
of the field and of the rotor surface. From here, for 
a departing moment we may write 

.so x ko dW 
-----
sin e de 

= -(.so x ko) L ilnPn' (cos 8) . (7) 
n 

Here, harmonic amplitudes An are determined both 
by amplitude of the n-th harmonic in the rotor sur
face shape and also by a field whose variance will 
cause a variance of the departing moment. 

Let an angle between .so and if;) be denoted by 
X (cos X = (.so . if 3)); and orienting ko within the co
ordinate system OZk, associated with the suspender, 
will be designated by spherical angles fj and <P ; and 
then we shall have: 

ko = ko[sin fj cos </J , sin fj sin </J , cos fj] oz . 

If in (7), in a rotor surface shape only a second har

monic is regarded (e.g., it is stipulated by rotor's 
ellipsoidality), then for r = 1) = ° it is not difficult 
to derive the below expressions for the associated 
components of the moment : 

M?, = -jA2{[P2(cosfj)d<>1l 

-~ sin2 8e-j (<>1l-24»] sin 2X - [P2 ( cos x)d4> 
2 

- ~ sin2 Xd(2<>1l-4»] sin 2fj}; 

Mg = 2A2sinxsinfj[cosxcosfjsin(all - </J) 

1 + 2'sin x sinfjsin2(all -</J)]; 

M~ = - A2[P2(cos fj) sin aOl 

1 + 2'sin2c5sin(a21-2</J))sin2x 

+ [H(cosx)sin(alO - </J) 

1 + 2' sin2 x sin(a12 - </J)] sin 2fj (8) 

Let us consider some specific cases significant from 
the point of view of their applications. 
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/\ s an object for regulation, a field of the axially 
\ IIl1l1ctric suspender itself is chosen: h = Z3 (when 

It 0) . In this case, we have 

M~=O 

M~ = -A2 sin aOl sin 2X (9) 

III t.he above expressions, the condition m? #- 0 
I, :m(.isfied provided the field magnitude or ampli-
1110 I. , of moment A2 is modulated with frequency 
" , n ]]· = 1jJ. + cp.: 

(10) 

I !ere , the value of nutation angle {) does not vary 
( 1I11,~ = 0). Monotonous variance of this angle can be 
"'k('I.,~d through modulating a suspender field ampli-
1iIOIc' by the frequency w = aOl· = cp. : 

A2 = O-:l [1 + 20:01 cos( aOl + <Pal) ] (11) 

Nlli.,' that in this case no change in kinetic moment 
, ... i"lltation occurs. 

' 1'0 concurrently affect both the orientation of R 
1I 1I t! the nutation angle {) is possible through modu-
11I1,illi{ coil currents in a way that 

A2 = a2[1 + 20:01 cos(aOl + <Pal) 

+20:11 cos(all + <P11)] . (12) 

'.1. It happens very often that an axis of rotor sur
I lIn; symmetry coincides with rotor's dynamic axis 
(""11 = x 3 or X = 0) . Here we obtain 

Mt') 0= -A2 sin( alO - <p) sin 26 . (13) 

First it is worthy of noting that regulating a gy
!'lIscope is possible if only ho is not coincident with 
1 , 1\t~ suspender symmetry axis OZ3, i.e., for 6 #- O. By 
:<I',!cifying 6 = 6 * , it becomes possible to force vector 
1\: 1.0 depart along some specified direction. To damp 
1\ Ili itation, a field can be regulated in the following 
ways: 

a) by modulating field's magnitude with frequency 
(\' 10· = 1jJ. : 

when 
(14) 

b) by rotating the field at the same frequency 
around suspender symmetry axis OZ3, when 
<P = alO + <P1O , and 

m~ = a2 sin <P1O sin 26 

and 
c) by rotating the field when 6 = ~ [alO + <PlO]. In 

this case, we have 

a 1 
mt') = -2a2 cos <pcos <P1O 

It is easy to see that for the case a) the regulating 
moment will be drastically less ('" 0:) than that for 
the other two. 

Let us observe in more details the case when gy
roscope motion is regulated by algorithm (12). Here 
the averaged motion equations will be of the form 

K {). = -0:01 az sin <Pal sin 2X 

where r = f3 + j a . 
Neglecting the variance of K or supposing it com

pensated, from the first equation in (15), the vector 
K is seen to precess with the frequency 

fl" = 2azP2(COSX) 
K 

around the equilibrium state 

• sin 2X _ j¢ 
T = -0:11 e tl 

2P 2 (cosX) 
(16) 

In order to shift R from the position Tl to the 
position 12 during some finite time, the depth 0:11 

and the modulation phase <Pll are chosen from the 
condition 

Then, the vector K will travel from the point Tl to 

the point T2 along the arc of radius R for the time 

(17) 

Here, the nutation angle will decrease from its ini
tial value {)o to 0 for the time 

(18) 

This time becomes minimal for the modulation phase 
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FIGUREl:Magnetically Suspended Robot Joint System 

(2) 

where II' I] are the distances of the upper and lower 
bearings from the mass center, respectively, and fJ is 
the inclined angle of magnet core. As a function of the 
gap and the current, the change in magnetic force can 
be written as 

Pi 
a g JioAN 2(I 0] +i])2 

4(go -cxsin fJ -c{y+/] {}z ) cos fJ t 
cos{}] +COS{}2 

2 

(3) 

where 101 is the bias current in the upper bearing, go is 
the steady state air gap, i 1 is the control current, ag is 
the force factor and c is the shape factor. Assuming that 
the changes in current and displacement of rotor are 
relatively small compared with the bias current and the 
nominal air gap, the magnetic force in Eq.(3) can be 
linearized, using Taylor series expansion, as 

a g JioAN2 i l I xSinfJ +{y+/] {}z)cosfJ Jl 
Fi ~ 2 1+21 1+2c 

4go 01 go 

Fl,2 =FOj +K;liJ +Kql xsin fJ ±Kq1 (y+l] {}z)cos fJ (4) 

F3.4 =FOj +K;J3 +KqlxsinfJ ±Kql (z-/] {}y)cos fJ 

FS6=Fo +K; i5-Kq xsinfJ±Kq (Y-12{}z)cosfJ 
, 2 2 2 2 

F7,8 =F02 +K;h -Kq2 xsin fJ ±Kq2 (z+12{}y ) cos fJ 

where 

FIGURE 2: Configuration of Magnet 

x t 
----------\--'trJ 

go L 
FIGURE 3 : Inclined Magnet Geometry 

and 102 is the bias current in the lower bearing, i 1> i 2 ' 

i 3' . . . ,i 8 are the control currents, i'"'oj' j= 1 ,2" are the 

steady state magnetic forces, K;j, j=1,2, are the 

magnetic force sensitivity for current and Kqj , j=1,2, 

are the magnetic force sensitivity for displacement. 

Equations of Motion 
Assuming that the rotor is rigid, as shown in 

FIGURE 4, we can write the equations of motion in 
the mass center coordinate(x, y, z, By, Bz) as, 

4 8 ' 

mx= L1'; sin fJ - L1'; sin fJ -mg 
;=1 ;=5 

my=(Fi -Fz+Fs-~)cosfJ 
mz=(F3-F4 +F7-Fg)cosfJ (5) 

1iiy +nI pOz =( p;. -F3)/I cosfJ +(F7-Fg)12cos fJ 

+( FJ -F4 - F7 +Fg)Rm Sin fJ 

Iiiz-Qi pOy=( Fi -F2)1] cos fJ +( F6 -FS)12 cos fJ 

+( F2 - Fi - F6 + FS )Rm sin fJ 
where Rill is the effective radius of magnet core, 1d is 
the diametrical moment of inertia, Ip is the polar 
moment of inertia and .Q is the rotational speed. Since 
the control is performed in the bearing coordinate(x, YI' 

Y2' zl' zz), the equations of motion must be transformed 


