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ABSTRACT 

The authors have developed sophisticated algorithms 
to predict the stability of active magnetic bearing 
(AME) supported rotors. The rotor is modeled with 
finite elements while the feedback components­
controller, power amplifier, actuators and sensors are 
given state space variable representations derived from 
their measured or predicted transfer functions. 
Correlation between test and theory has consistently 
shown an over prediction of active damping with both 
laminated and solid sleeve rotors. This paper shows the 
improvement in correlation achieved by including 
eddy current Ihysteresis lag and rolloff effects in the 
simulation model. 

INTRODUCTION 

The vibrations of magnetic bearing supported or 
active vibration controlled rotors are affected by the 
stiffness, mass, damping and external force factors of 
conventional rotors plus the dynamics of the control­
feedback components, i.e. sensors, controllers, power 
amplifiers and actuators. The coupled electro­
mechanical system then governs critical speeds, 
unbalance response and stability. Simulation codes for 
conventional rotors lack the ability to incorporate the 
frequency dependent response characteristics of the 
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feedback components. Hence a new simulation code 
was jointly developed by Texas A&M, NASA Lewis 
and U.S. Army for this purpose. In a previous paper 
Lin and Palazzolo, et al [1] demonstrated how transfer 
function representation of electrical components in 
feedback loop of control system could be accomplished 
by curve fitting the component's frequency response to 
that of a 2nd order low path electrical filter. This 
approach provided a 2nd order linear differential 
equation representation of the component which could 
be very easily coupled to the rotor system finite beam 
element model. They also provided solution of the 
characteristic equation of the closed loop system 
utilizing QR algorithm to extract the eigenvalues and 
to investigate stability. Maslen and Bielk [2] 
presented an approach for coupling a frequency 
dependent, feedback loop component with a generally 
defined transfer function, to a standard finite element 
rotor system model. This method avoids the problems 
encountered in transfer matrix based approaches to 
solve the closed loop stability problem, namely non­
collocated sensor-actuators and frequency dependent 
feedback components. Tang and Palazzolo [3] 
presented a general methodology, coupling a F.E. 
based model of the rotor with state space models of the 
feedback control electromechanical components. This 
controller was applied to a cryogenic magnetic bearing 
test rig at NASA Lewis to predict the stability 
boundary and critical speeds, however only one 
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transfer function for controller was employed. The 
current paper presents stability test and simulation 
results of a magnetic bearing supported gas turbine 
with a F.E. simulated B field transfer function (eddy 
current effect) and of a cryogenic magnetic bearing test 
rig at NASA Lewis with a measured B field/coil 
current transfer function. A closed loop 
electromechanical simulation approach is applied to 
the horizontal magnetic bearing gas turbine rig in 
figure 1. The transfer functions for the proportional 
path and the derivative path in the controller are 
modeled independently in the simulation. A nonlinear, 
magnetostatic field simulation for the horizontal 
magnetic bearing is employed in determining a 
stiffness for the magnetic control force/control current 
and the magnetic position stiffness due to bias current. 
These are compared to a static load/deflection 
experiment. A time harmonic magnetic field 
simulation for the magnetic bearing is employed for 
determining the frequency dependent field lag from 
eddy currents. 

STATE SPACE 
FREQUENCY 
COMPONENTS 

REPRESENTATION OF 
DEPENDENT FEEDBACK 

The electromechanical system contains feedback 
components which have frequency dependent 
characteristics such as the digital controller power 
amplifier and magnetic bearings (B field/coil current 
effect). The dynamic characteristics of the feedback 
electromechanical components can be represented in 
transfer function forms. These forms are obtained by 
curve fitting experimental/simulated data to complex 
rational functions. Tang [3] provided a curve fit 
methodology to obtain the transfer function from the 
frequency responses. The transfer functions have the 
general form; 

Vout(S) = G(s) = ao + als+ a2s2+ ... +an ISn-1 
~n(s) bo + bls+ b2s2 +. .. +bnsn (1) 

which are converted into the 1st order (time domain 
state-space) description; 
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Figure 2 through 3 show the comparison of the curve 
fit and measured frequency response functions for a 
unit gain proportional path through the PID hybrid 
controller and power amplifier. The agreement is seen 
to be excellent. 

MAGNETIC FIELD SIMULATION FOR 
HORIZONTAL MAGNETIC BEARING 

A magnetic field analysis for the gas turbine's 
homopolar horizontal magnetic bearing was performed 
to determine the current stiffness (control force/control 
current), the magnetic position stiffness and the 
frequency dependent field lag using a two dimensional 
finite element model. 

The governing vector potential magnetic field 
equation is represented as; 

1 oA 
-V·VA=o---] 
Jl ot s 

(8) 

or 

~ (~ 0 A) + ~ (~ 0 A = (J" 0 A _ J (9) 
OX Jl OX oy Jl oy) ot s 

where Js is source current density, cr is electric 
conductivity, ~ is magnetic permeability and A is 
magnetic vector potential defined as B= V>G4 where B 
is magnetic flux density. 
For nonlinear magnetostatic field analysis eq. (9) is 

reduced to; 
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o 1 oA 0 1 oA 
-(--)+-(--)=-J 
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(10) 

This equation is solved by employing a functional and 
enforcing the Dirichlet and Neumann boundary 
conditions. The functional is; 

F(t)=f ~Bv(B)BdB]dn-f A·Js dn (11) non 

where v(B) is magnetic reluctivity (=1/JloI..l .. ) 
The domain n is sub-divided into finite elements. In 

each element the solution is prescribed in terms of 
lIodal values of the potential function, A. The 
functional is then minimized with respect to each of 
the nodal potentials. Due to the nonlinearity of 
magnetic permeability, a Newton iterative procedure is 
used to obtain the solution. The Maxwell stress tensor 
force calculation was employed in this analysis; 
For two dimensional time harmonic field analysis the 

source current density is assumed to be time harmonic; 

and 

where 10 is zero to peak amplitude of source 
current, A 0 is zero to peak amplitude of nodal 
vector potential and w is angular frequency. 

For this case equation (9) becomes; 

(12) 

(13) 

~(~ OAo)+~(~ oAo)=jO)(FAo-J (14) 
ox 11 ox oy f.J oy 0 

Using the Galerkin method the governing integral 
equation is; 

f Tal oAo a 1 oAo 
{N} [-(--)+-(--) - jwuAo +Jold~2=O ox J.l ox oy J.l oy 

where {N} is the shape function matrix. 

The solution for the B field is obtained from; 

B =V x A 

(15) 

(16) 

Figures 4(a) and 4(b) show the real and imaginary 
parts of the B field phasors at 50 Hz from the harmonic 
analysis. Note that the imaginary part has the opposite 
di rection to those of the real parts indicating a lag 
Figure 5 shows the results of harmonic analysis and 

Cllrv~ fit transfer functions for applying both 100 % 
conductivity and 80 % conductivity in the rotor sleeve 

(solid Hiperco 27 material) . Agreements between the 
simulated response and curve fit transfer functions are 
very good. 

ASSEMBLY OF THE ROl'OR SYSTEMS AND 
FEEDBACK COMPONENTS 

The simulation code represents the rotor model with 
finite element (beams) and rigid inertias, while 
representing the feedback components with their 
measured or predicted transfer functions. The first 
order models of the feedback components are 
assembled with the rotor finite element model to form 
the coupled system model. Palazzolo [4] provides the n 
degree of freedom rotor bearing system equation in 
state space form as: 

[~ ~l.x2J;]+[ M~;C M~IK 1.X2J;]=[ M-:(t)Lxl 
(17) 

The magnetic position stiffness was determined by 
considering both a static load/deflection test and 
magnetic field simulation. 

The state space equation of the controller was divided 
into two parts, i.e. a proportional path and a derivative 
path: 

and 

Similarly. the power amplifier state space 
representation is: 

(20) 

and 
(21) 

The state space representation of the B field/coil 
current simulated transfer function (eddy current 
effect) is: 

and 
(23) 

'c. 
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Since the magnetic bearing forces have been 
linearized with bias currents, the control forces are 
approximately proportional to the control currents: 

(24) 

where Fcon represents the control force vector and P is 
the matrix (n x J) to locate the magnetic bearing force. 

The current stiffness (Force/current), fJ was 
determined from the static load/deflection test and 
magnetic field simulation. 

The input voltage to the controller is obtained as: 

where ~ is the probe sensitivity determined 
experimentally. Gpr is a signal amplifier gain and Tis 
the matrix (I x n) to locate the sensor. 
The input voltage to the power amplifier and the coil 

current are; 

(26) 

(27) 

where R is a resistance and leon represents the control 
current in the coil. The input to the B/I transfer 
function is the coil current; 

(28) 

where VE represents current instead of voltage. 
Consider the free vibration case and assemble eqs. 

(17) through (28) to obtain the closed loop system 
equation; 

[1] {Z} + [Q] {Z} = 0 (29) 

where Q is dynamic matrix and Z is state space 
variable vector for closed loop A VC system; 

(30) 
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(32) 

(33) 

(34) 

The eigensolutions for eq. (33) are obtained by 
substituting 

Z = If/ eAt (35) 
yielding 

Qlf/ = -2lf/ (36) 

The eigenvalues/eigenvectors are extracted from this 
equation utilizing the QR algorithm. 
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CLOSED LOOP STABILITY RESULTS 
The zero-speed stability boundary was measured by 

lowering the derivative feedback gain KD while 
maintaining a constant proportional feedback gain Kp 
and observing the shaft's vibration orbit on an 
oscilloscope. An abrupt increase in vibration indicated 
unstable operation by this method. The stability bound 
is extremely important since it defines the range in 
which the derivative and proportional feedback gains 
may be adjusted to provide desired active stiffness and 
damping. 

The initial correlation for the gas turbine engine 
simulator was poor as shown in figure 7 (w/o eddy 
current curve). The apparent loss in derivative gain 
effectiveness for stabilizing the system could be 
explained by including effects of eddy currents set up 
on the non-laminated rotor sleeve or by material 
hysteresis. A time harmonic eddy current simulation 
was performed employing finite elements, which 
yielded a transfer function between the B field and the 
coil current. Figure 4 (a,b) show the real and 
imaginary parts of the B field phasors at a frequency of 
50 Hz. A significant lag was predicted by the F.E. 
model which provided an explanation for the loss in 
active damping (derivative gain). The F.E. simulation 
was sensitive to the surface conductivity value for the 
rotor sleeve-flux conduction path. The result in figure 
7 shows how the stability bound prediction improved 
significantly when the predicted B field/coil current 
transfer function was included -and even closer 
agreement was achieved if 80 % of the nominal surface 
conductivity value was used in the eddy current F.E. 
simulation. 

The NASA magnetic bearing test rig correlation 
between the predicted and measured bounds was 

Curren. Stiff".,.. ~ 
A/ V 

P 

Mag-
Eddy Current Effect Fame 

"A" 

significantly improved when the measured transfer 
function between the coil current and the bearing's B 
field was included in the model as shown in figure 8. 
The validity of the code was also confirmed in this case 
by comparing the measured and predicted unstable 
oscillation frequency at the instability boundary. Figure 
9 shows very close agreement especially when the 
measured B field/coil current transfer function is 
inserted into the model (B/I include). Note that the 
instability frequency "jumps" from the first to the 
second mode at a proportional feedback gain of 
approximately Kp=3 . 
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