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ABSTRACT 
i(nown equivalence of the field of a permanent 
wagnet having the fonn of a circular cylinder and 
Ixial magnetization and that of the field of a circular 

hlpe with constant surface current is used. Exact cal
culation of potential energy of interaction between 
Iwo circular currents makes it possible: 
I) to express in accurate formulae force and moment 
characteristics of interaction between magnets; 
':;) retaining the second-order memebers with respect 
to small displacements of two initially coaxial rings 
(0 build "the stiffness matrix" and analyse quantita
tively the known static unstabiIity of the system. One 
,)f the possible rotor suspension configurations with 
permanent magnets is given to illustrate why the 
J i i .1in quantitative characteristic of unstability -
negative relationship of eigenvalues of the stiffness 
Jiatrix - remains valid for all axially symmetric sys
tems. 

INTRODUCTION 
Axial and radial rotor stabilization in machines and 
devices being provided by permanent magnets have, 
as a rule, axial symmetry and more or less compli
cated boundary composed by cylindrical (in rare 
cases, by conical) surfaces [1]. Modem metal-ceramic 
materials and magnetization technology make it 
possible to regard magnetization as permanent uni
form and either radial or axial depending on con
figuration. 
Analysis of force and rigidity characteristics of a 
magnetic suspension system under complicated con
figuration of magnets themselves and magnetic cir
cuits is a complex problem dealt with in numerous 
special works and computer program packages. 
There is a natural tendency to obtain simple, visible, 

though approximate estimation formulae represent
ing the effect caused by main parameters (such as 
dimensions relationship). One can mention analysis 
of Baermann's bearing made by Bekkers [1], work 
[2], and others. Frequently, Simplification of physical 
model or geometry of magnets is done to make the 
analysis easier. Alternative approach is possible in 
simple situations. In such a case an exact field prob
lem solution which is further simplified by using not 
physical but mathematical ways of approximation is 
obtained. 
There is a special stability problem requiring exact 
relationships. It is a very urgent problem since nu
merous attempts to provide complete body levitation 
in permanent magnetic field do not cease. Fruit
lessness of such attempts except the case of diamag
netic is theoretically proven by Earnshow [3] and 
Braunbeck [4]. Using approximate formulae for sta
bility analysis can qualitatively break the result. 
The present paper deals with interaction between 
two axis-symmetric permanent magnetic systems 
with axial magnetization under small displacement 
from co axiality. Analysis of such systems is based on 
the coupling energy between two circular rings pow
ered by direct current. Analytical solution of the 
problem up to fonning matrix of quadratic form for 
potential energy is made without approximations 
which permits to analyze stability exactly. 
To provide rotor suspension circular permanent 
magnets with axial magnetization are often used as 
radial and axial bearings. It is known [5] that fields 
of such magnets are equivalent to those of perma
nent ring currents distributed along cylindrical sur
faces. One can regard them as superposition of circu
lar currents and use energy additivity which makes it 
possible, firstly, to find force and moment character
istics of interaction between actual magnets by inte
grating with respect to the axial coordinate and, sec
ondly, to consider conclusions obtained during sta-
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b) 

FIGURE 1: System unit vectors and coordinates for 
rings arrangement 

bility analysis of a simple ring pair of current to be 
true for any system that can be reduced to interac
tion between such pairs. 

POTENTIAL ENERGY OF INTERACTION 
BETWEEN CIRCULAR CURRENTS 
Let us consider two circular arbitrarily located rings 
with currents (Fig. la). Subscript i=l, 2 indicates 
that characteristics belongs to the i-th rings: 

R j are the ring radii; Jj are the ring currents; OJ are 
the ring centers. 

- -) 

Vector I =OP2 connects centers. Let each ring be re-

lated to a cylindrical coordinate system {p;,fP;,z;} 

with unit vectors {ep;,erp; ,ez ;} , dependent on polar 

angle: 

(1) 

Here superscript (0) corresponds to angle fP; =0. 
Axis Zj passes through the center of the i-th ring per
pendicularly to its plane, current Jj is considered to 
be positive if it flows in the ring counterclockwise 
relative to the unit vector ez; • 

To link cooridinate systems let us draw a plane H 
containing f and ez1 (shaded in Fig. la) and count 
polar angles fP; from it. This breaks the symmetry of 
the coordinate systems used but turns out to be con
vinient enough for our purposes. 

Let e:2 denote the projection of unit vector ez2 to 
the plane H. Let us introduce angles: 

A 

[J =ez1 ,e:2 - in the plane H; 
A 

Y =e~,ez2 - in perpendicular plane. 
Mutual location of unit vectors in the plane H is 

shown in Fig. 1 b. The same figure shows a-axial and 

o-radial displacement of the center O2 of the "mo
vable" ring relative to its "nominal" position on axis 

0IZI at distance 10 from the center 0 1 of the "fixed" 
ring. 

Vector potential A1 of the field arising from ring 1 
at the point P of ring 2 is determined by the for
mula [6]: 

A1(~)=l fJlQ) dl1 
c ~ rpQ 

(2) 

where d11 - is the linear element of the ring 1; Q - is 

-) 

the current point of ring 1; Tp=OIP- is the radius vec-

-) 

tor of point P relative to the center °1; rpQ =lrpQI - is 

the distance between points P and Q ; c - is the speed 
of the light. (Here and further Gauss system of units 
is used.) 

Potential energy U12 of interaction between rings is 
determined by integrating with respect to ring 2 [6]: 

(3) 

( a· b - is the scalar product of vectors.) 
Vector-currents and linear elements are determ
mined by formulae 

J;=J;erpil dl;=R;dfP;, (i=1,2). 

Substituting A1 (2) into U12 (3) we shall need quan-

(4) 

for whose calculation let us express the unit vectors 
of the system 2 in term of unit vectors of the system 

1 at fP1 =0. In this basis, obviously, e~ =(1, 0, 0), 

eg1 =(0, 1, 0), ez1 =(0, 0, 1). From Fig. 1 b and deter

mination of angle y we obtain 

eg2=eg1cos[J-ez1sin[J, } (5) 
ez2 =eg1siny+(eg1sin[J+ ez1 cos fJ)cosy, 

then eg2 is found by vector product: 

eg2 =ez2 xeg2=eg1cosy-(eg1 sin[J+ez1cosfJ)siny 
U sing these representations and formulae (l) of ro
tation of unit vectors, we obtain 
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epd qJl H p2( qJ2)=COSj3COSqJl COSqJ2 - j 
_ -sin j3!inycosqJl sinqJ2+ cos!sinqJ} sinqJ2 
eq:>l( qJl)·eq:>2( qJ2)=cosj3smqJl smqJ2+ 

+sinj3siny sinqJl sinqJ2 +coSYCOSqJl COSqJ2 
which enter in (4). 

ipansion of vector T is illustrated by Fig. lb: 

T =(lo+a) ezl+oe%l 
from where 

1 .,. ,l qJl)=Oco.I'qJl } 

J2( qJ2)=OcOSj3COSqJ2 -t5sinj3sinysinqJ2-
-(Iv +a )sinj3cosqJ2 -(lo+a )C08 j3siny sinqJ2 

(6) 

(7) 

(8) 

(9) 

Substitution of the expression obtained into (3) will 
lUlt for potential energy in terms of double integral 

h respect to qJl2:0SqJl' qJ2s21t depended on four 
parameters: 

Ul2 =U12(a,j3, y,o) 

;lIld dimensions of the ring system:Rj, Rb 10 , 

Currents J j enter into multiplicate constant 

(10) 

J}J 2 
g=-21t (11) 

c2 

Parameters a . ., 0 are generalized coordinates of a 
me.chanical two-ring system with four degrees of 
~'!'"~cdom: rotation about axes Zl and Z2' obviously, 

, not change energy. Complete expression for en
.... lgy is not given because of awkwardness and also 
because it will not be used further (small values of 
IHframeters a... 0 will be considered), however the 

pressions given above can be useful for studying 
. il-linear effects of interaction. 

QUADRATIC APPROXIMATION: FORCE 
i, crORS AND STIFFNESS MATRIX 

Let generalized coordinates a.,. 0 characterize 
displacement of "movable" ring 2 relative to nomi-

--f 

nal coaxial position ( iOP2i=lo,a=0=0, j3=r=0) 
and be small. Potential energy in quadratic ap
I" nximation has the form 

4 1 4 4 

U12 zU?2+ I/qjqj+-IICjkqjqk 
j~l 2 j~l k=l 

where ql ... q4 substitute a .. 0. Constant component 

UIi is of no importance. Determining force factors 

j~j and elements of stiffness matrix Cjk requires 

that the 2-nd order members in subintegral expres
sion (3) be retained. From the 2-nd formula (6) we 
obtain 

eq:>l ·eq:>2 z f3y sinqJ 1 COSqJ2 + 

Similar approximation in (6), (9) and usage of (4), 
(8) makes it possible after obvious but awkward cal
culations to find 

rpk zr;/ -r;/[loa+(R2 coSqJ2 - R}COSqJI)O

-R21o( j3cosqJ2+ysinqJ2)]-

_l'O-3[02+a L2Rp( j3COSqJ2 + ysinqJ2)+ 
2 

+R]R2( /32 COSqJ]COSqJ2+ 2/3ycosqJ]sinqJ2+y2 si1lqJ1sinqJ2)]+ 

+i'o-lzga2 +( R2cOSqJ2 - RI cOSqJ}i 02 + 
2 

+21o(R2cosqJ2 - R1cosqJ/)ao-21gRp( j3COSqJ2+y sinqJ2)-

- 21oRlR2cosqJ2-R}cosqJI)( j3COSqJ2+ ysinqJ2)O+ 

+zgRJ( 132 COs2 qJ2+ 2j3ycosqJ2 sin(h+y2 sin 2 qJ2)] (13) 
Here 

(14) 

qJ=qJI - qJ2 (15) 
By substituting (12), (13) into (3) and calculating 
partial derivatives we find force factors: 
axial force 

!C, =(a~12) =g2Z0 2tJ'o-3 co:( qJl-qJ2 )dqJldqJ2; 
va q=O 1t 0 0 

passing to integrating with respect to qJ (I 5) instead 
of qJ} , using periodicity and evenness of functions we 
can find easily 

1! 

fo:=2g1of'o-3cosrpdqJ; (16) 
o 

radial force Is vanishes as so moments /p ,fy' 
Thus, 

f<5=O, fp= fy=O, (17) 

which was easy to foresee due to axial symmetry of 
nominal position. 
As to axial force J~ ,according to (16) it vanishes 
only under coplanar ( 10 =0 ) position of rings. 
Let us pass to calculation of the stiffness matrix. 
Axial stiffness is determined as 
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( PUl2 ) g 2"2,, ( {to)2} Caa = --2- =-J fro-3COs(IPl-1'P2) 1- - IPldIP2 
Ja q=0 2Jr 0 0 ro 

and is easily reeduced to the form 

Caa =2gIro-3COSIP(1-{~ J}9 (18) 

For radial stiffness we have 

C _((PUj2 ) --lc (19) 
88 - JIP q~ - 2 aa 

Further, for solving stability problem this result is of 
crucial importance. 
Similarly, we find 

" CfJ8 =C8fJ =3gtoRdro-5costp( R2-Rjcos9)d9 (21) 
o 

The rest elements of the stiffness matrix are equal to 
zero, which makes it possible to give its representa
tion determined by three quantities only: 

o 0 
C fJfJ 0 
o C fJfJ 

C8fJ 0 

CALCULATION OF PARAMETERS OF 
INTERACTION BETWEEN CYLINDRICAL 
MAGNETS 

(22) 

The formulae obtained above for circular current 
rings allow us to find force and stiffnes characteris
tics of interaction between coaxial cylindrical mag
nets. For this purpose it is enough to substitute circu-

lar currents J i by differentials of surface current [5] 

dJi =Micdzi , (i=l, 2), (23) 

(here Mi - is the magnetization of the i-th cylindrical 
magnet which is considered to be axial and constant 
in magnets body) and integrate with respect to axial 
dimensions of interacting magnets. For cylinders this 
integration can always be made in explicit form. 
As an illustration consider calculation of interaction 
force and axial stiffness of two equal magnets having 
height h and radius R with the distance between the 
centers to (Fig. 2a). Such pair of magnets can serve 
as axial bearing of rotor suspension. 
Reverse magnetization generates repulsive force act-

/ 

z 

b) h/2 h/2 

FIGURE 2: To computation of axial (a) and radial 
(b) interaction 

ing along axis and determined according to (16), (23) 

_(~ -h) Io +h 
Ir 2 2 

fa =2Gf cosqxl9 f dZj fro-3Zdz] 
o _(Io+h) Io-h 

2 2 

Here Z=Z2-Zj takes in place of to in (16), 

G=27rMjM 2 

r,J =a 2 +z2 

(24) 

(25) 

(26) 

(27) 

Integrating with respect to Z instead of Z2 in (24), 
we have 

Ir 

fa =2G f(2f/J(0,9 )-f/J(h,9 )-f/J( -h,9) ) cosqxl 9 , (28) 
o 

where function is introduced 

f/J(1],9)=ln(10+1]+~a2+(l0+1]/) , 
and value a=a(9) is determined (27). 
Similarly, axial stiffness is calculated. 

Ir 

(29) 

Caa =2Gf(2If/(O,9 )-If/(h,9)-If/( -h,9) ) cosqxl 9 (30) 
o 

where 

( 2)-1/? 
1f/(1],9)= a2 +(l0+1]) - (31) 

Calculation of radial stiffness of coaxial magnets 
(Fig. 2b) forming a radial bearing unit can be re
garded as another illustration of the foregoing. At 
first, take into accont interaction between cylindrical 

surfaces of radii Rj and R2 • 

Formulae (18), (19) give 

1l h/2 hl2 

CJi =Gfcos9d9 f dZ j f(ro-3 -3z2ro-5)dz2 , 

o -h12 -h12 



Fourth International Symposium on Magnetic Bearings. August 1994, ETH Zurich 169 

where as before Z=Z2-Z] but substitution of 10 by 
:: in (14) gives 

rJ =b2+Z2 (32) 

b2 =R/ +R/ -2R]R2cos({J. (33) 
Calculation result in the fonnula of the fonn (30) 
hut without multiplier 2, and in (31) should be re
placed a2 by b2 according to (33). 

Interaction between surfaces radii R] and RJ con
tributes to the opposite sign, i. e. 

-e55 ="CjJ -ell, - (34) 

CU being calculated according to the same fonnulae 

with replacing Rr~R3 in (33). 
For practical calculation, in (28), (30) most fre
quently gap smallness bet\veen magnets can be used: 

lo=h+ao where ao«h. Similarly, for a radial bear

mg R2=R]+00, (00 «R]). 
Note that (30) pennits representation in complete el
liptic integrals which is natural for interaction be
tween coaxial solenoids actually replacing 
cylindrical pennanet magnets. 

SYMMETRIC ROTOR SUSPENSION IN 
PERMANENT CYLINDRICAL MAGNETS 

ig. 3 sho\'/s symmetric rotor suspension provided 
hy two radial magnetic bearings(stator ring are not 
"hOWll) and two axial magnetic bearings with stiff
ness matrices C' and Crx respectively. Such a con
figuration is known to be statically unstable, which is 
corroborated by the following analysis. Dimensions 
L and I are considered to be large enough to take 
mto account only interaction inside the pair of mag
netic rings ("movable-immovable"). 
A rotor position is detemlined by quantities (0., [3, y, 
0) already shown in Fig. I. and connect to the plane 
passing through axis Zj, and centers OJ and O2 • 

The problem arises from misalignment between the 
plane of central eccentricity and the eccentricity 
planes in pairs of interacting rings. 
Consider the pair fOnning the right radial bearing 
with centers 0~1'0~2 through which a plane con
t aining axis Zj is drawn. As in Fig. I b let us intro
duce parameters (ar]> fJr]' rr]' or]) for these centers 
and the plane and express them in teenns of coordi
Ilates 0. ... o. For this purpose we introduce unit 
vectors of cylindrical systems ( e rr].erpr].eZl) and 
(crr2.erpr2.eZ2) related to immovable and movable 
lings. They differ from the central unit vectors not 
Il1dicated by r due to the existing misalignment 
1. :tween the planes of eccentricities. 
Let us present the explicit vector equality 

0;20:2 =0:20; + 0/j2 +020:2 

..... an expansion in unit vectors 

FIGURE 3: Symmetric rotor on permanent 
cylindrical magnet suspension 

ar]ez]+Orlepr] =fXez]+O e~l-Lezl+ Lez2 (35) 

(Index (0) corresponds to ({Jk=O; k=pJ. prJ) 
Equality (35) allows us to fmd the required relation. 

1. Multiply it scalarly by ez] and use (5). With accu
racy up to the second order inclusive we have 

arl~a-1L (fJ2+r2) (36) 

2. Take squares of modules in the left and right sides 
of (32) using (5) again. This gives subject to (36) 

oj=02+2LofJ+U( fJ 2 +r2) (37) 

3. MUlitiply (35) subsequently by oep] and oepr] 
and sum the result, which gives 

or]fJr]=ofJ+L (fJ2+r2) (38) 

4. Present ez2 as an expansion similar to (5) but in 

unit vectors (eprl' e",rl , ez]). Multiply the result sca

lady by eel' which allows us to state that 

fJr1+r~z fJ 2+r2 (39) 
The relationships obtained are sufficient for the po

tential energy U; of the right radial bearing to be de
tennined. 

+lcr (fJ2+r2) (40) 
2 PP 

For the left radial bearing we shall obtain the same 
relationship replacing L by (-L). 
For the right radial bearing (the centers of rings are 

O~ and O~) the same relationships (36-39) for (aaJ , 

fJaJ , raJ , oa}) can be used if is replaced L by - (L+l). 
In the fonnulae for calculating force and stiffness 
characteristics regular displacement A. of the centers 
of rings should be taken into account which makes 

nonzero as force f;(;1) so nondiagonal stiffness 

C:MA) according to (16) and (21) (there 10 corres

ponds to A). For potential energy we shall obtain 
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+lqA0 2-2(L+ZjO/3+(L+Z/( /32 +y2 }-2a2 )+ 
2 

+ lcpp ( /32 +y2 }+ql A)( 0/3 -( L+Z)( /32 +y2 }} (41) 

For the left axial bearing (L+Z) and A should be re
placed by -(L+I) and (-A) respectively. The latter 
results in changing the sign 

J()/ -A}=-1a(A}, C/jp( -A}=-CJP(A}, 

whereas C/j/j and Cpp do not change. 

Summary expression for potential energy is simple 
diagonal quadratic form 

U =UO+lcI (oL2a 2}+lcI (/3 2 +y2) 
2 /j/j 2 • ' 

where summary stiffnesses are given by 

1c jp =Cpp+Cpp - 2qp( L+I }+CJJV + 

+CUL+Z/ + J;(L+l) 

(42) 

(43) 

(44) 

Note that for summary stiffnesses the relationship 

obtained for simple rings c/j/j=_lcaa , remaines 
2 

valid. It is not difficult to see what is the effect of 
principle premises: coaxiality of nominal magnetic 
systems and additivity of potential energy. 

CONCLUSION 
The result obtained make it possible to calculate me
chanical characteristics - force and stiffness parame
ters - of interacting axially symmetric permanent 
magnetic fields under small rotor displacements. 
Classical results on principle unstability of rotor sus
pension provided by permanent magnets in confor
mity to the field geometry considered have been con
finned. However, quantitative expressions obtained 
for the elements of the stiffness matrix make it pos
sible to estimate additional stiffness to be provided 
for combined suspension. Such problem arises when, 
for instance, along with permanent magnets active 
electromagnetic bearings are used by some dcgrees
of-freedom. 
The form of obtained stiffness matrix allows us to 
offer unusual rotor configuration in which achive 
ment of complete levitation in permanent magnetic 
field do not contradict the conclusion on unstability. 
Namely, two current coplanar circular rings with op
posite directions of currents exert repulsive force and 

FIGURE 4: Toroidal rotors on pennanent 
magnets suspension 

have positive radial and angular stiffnesses. More
over, axial stiffness is negative. In the structure of 
toroidal rotor shown in Fig. 4a this unstable axial 
degree-of-freedom corresponds to the rotation coor
dinate of a rotor and is neutral for stabilization re
quirements. From the viewpoint of field energy effi
ciency the inverse configuration (Fig. 4b) is more 
preferable. 
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