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ABSTRACT 
The mathematical basis for bias linearization of ac
tive magnetic bearings is developed. The approach 
generalizes prior ad-hoc methods of linearizing the 
relationship between actuator force and electromag
net current. Growing from the properties of a fun
damental representation for the current-force rela
tionships, conditions are determined under which 
linearization may be possible. A numerical opti
mization problem is posed whose solution provides 
a linearization scheme which maximizes the avail
able force capacity of the bearing. A corollary result 
is a method for obtaining coil-fault tolerance with
out adding coils to existing actuators. Several paper 
examples are presented to illustrate linearization of 
asymmetric bearings and those with failed coils. 

INTRODUCTION 
Conventional radial magnetic bearings employ a 
magnetic stator with radial legs surrounding a mag
netic rotor. Electromagnet coils are wound on some 
or all of the stator legs and forces are exerted on the 
rotor by passing currents through these coils. With 
suitable coil currents, a radial force of a prescribed 
magnitude and orientation can be applied to the ro
tor. The desired force is determined in response to 
measured rotor motion in order to achieve stable ro
tor support with appropriate dynamic properties [5]. 
Thus, the bearing is a feedback device consisting of 
a rotor motion sensor, a magnetic force actuator, 
and a controller which regulates the coil currents in 
response to the sensed motion and other inputs. 

Most commercial radial magnetic bearings have at 
least eight legs in the stator and at least four inde
pendent coils. (In many cases, collections of neigh
boring coils are wired in series. In this work, a col
lection of coils wound in series would be considered 
to be dependent.) This means that the number of 
independent coils in the stator substantially exceeds 
the number of force components which are to be gen
erated - usually two. 
As will be developed in the present work, the re
lationship between these currents and the resulting 
force components is fairly easily determined by anal
YSIS: 

/t,I2, ... ,In ::}FI,F2, ... ,Fp 

but the inverse relationship: 

FI,F2, ... ,Fp::} /t,I2, ... ,In 

p<n 

is not only difficult to find but is not unique. For the 
purposes of designing the feedback control, this lat
ter relationship is crucial since the general dynamic 
problem relates the bearing forces to the rotor mo
tion; ideally, the character of the magnetic device 
should not enter directly into the design of the con
troller. 
The problem of determining a suitable set of control 
currents cannot be resolved simply by using pseudo
inverse methods because the relationship between 
coil currents and force components is quadratic. In
stead, the coil currents are selected either by a non
linear optimal rule or by a linear, suboptimal rule 
which permits a simpler interaction with the con
troller. While not all stator/coil configurations will 
permit a linear rule for selecting coil currents, many 
stator configurations can be linearized. 
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Linearization is accomplished by imposing a biasing 
current in each coil which produces a magnetic stress 
but no net force at an equilibrium position. Al
though the current to force relationship is quadratic, 
bias and control currents are chosen so that all 
second-order control current terms are identically 
zero at the equilibrium point. When the bias cur
rent magnitudes are held constant, the relationship 
between control current and bearing force is linear. 

Bias linearization is widely used in a number of mag
netic devices from radial magnetic bearings to six 
degree-of-freedom actuators (for example, [1, 2, 3, 
8]). These applications employ symmetric geome
tries where the determination of a permissible set 
of linearizing currents proceeds by inspection. How
ever, the previous work has not been extended to 
the general problem, particularly where coil failures 
produce substantial asymmetry in the stator. 

The present work explores the manner in which n 
coil currents should be selected to provide the x
and y- force components in a radial magnetic actu
ator of arbitrary geometry. A more general represen
tation for actuators producing m independent forces 
is developed in [9]. In stators which permit lineariza
tion, an optimal coil current map can be determined 
which relates the n coil currents to the desired force 
components in terms of a bias vector and two control 
vectors which determine the two force components. 
Finally, a method for determining an optimal set of 
currents is considered. 

MODEL 
Assuming negligible eddy current effects and a linear 
flux density to field intensity relationship with negli
gible hysteresis effects, a magnetostatic analysis can 
be employed . If losses from flux leakage and fringing 
are also assumed negligible, the applicable magneto
static field equations become one dimensional. Flux 
density at any point in the bearing can then be com
puted using simple circuit theory [7]. 

An n pole magnetic bearing (as exemplified by 
Fig. 1) is characterized by N ij, Bj, Aj, gj, and OJ for 
j = 1 ... n, the impressed magnetomotive force, flux 
density, pole face area, air gap length, and centerline 
angle respectively for each pole. The reluctances of 
the permeable parts of the structure are neglected 
on the assumption that the relative permeability 
is well over 1000; virtually all of the circuit reluc
tance is due to the air gap associated with each pole. 
The sign convention adopted here assumes that pos
itive fluxes are directed out of the stator poles into 
the rotor while positive coil currents pass counter
clockwise around the stator poles when viewing the 
pole end from the gap. It is assumed that the only 

Figure 1: Generic bearing arrangement 

sources of magnetic excitation are the coils, which 
specifically excludes bearings employing permanent 
magnets from this analysis . 
Ampere's loop law for the magnetic circuit results in 
n - 1 independent equations: 

One additional independent equation results from 
conservation of flux : 

o (2) 

This matrix relationship IS represented more suc
cinctly by 

GB=NI (4) 

where G can easily be shown to be nonsingular 
which permits 

(5) 
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Note from (3) that the matrix N has a nullity of l. 
Consequently, one of the currents in 1 is redundant 
jf each leg has an independent coil. In this case, the 
redundancy is used to minimize the coil energy by 
defining 

(6) 

where the columns of K are selected to be orthogonal 
to the null vector of N. Further, (3) assumes that 
the coil currents on the n legs are all independent. 
In many cases, combinations of the coils are wired 
in series so that, for instance, i 1 = -i2 . This case 
can, again, be represented by (6) where the rows 
of K define the interdependencies. Finally, one or 
more of the n coils may have failed in which case 
the corresponding current is zero. This condition 
can also be represented by (6) where K is simply the 
identity matrix with columns corresponding to the 
nonfunctioning coils removed. It is significant that, 
in all cases, the dimension of I is at most n - 1. 
Forces produced by the bearing can be most read
ily computed using Maxwell's stress tensor[6]. With 
some reasonable simplifications, this reduces to the 
form 

F = _1_ [ B2da 
- 2Jl.o JA - (7) 

where the integral is taken over any closed surface 
which does not cut through magnetic material. For 
the geometry considered here, (7) becomes 

c == _l- diag[Aj coslJj] 
2Jl.o 

S == _1-diag[Aj sinlJj ] 
2Jl.o 

Finally, by defining V == G -1 NK, these equations 
can all be combined to produce a very succinct state
ment of the force-to-current relationship: 

" , 
Fx =lX1 : X== V'CV (8) 

and 
" , 

Y == V'SV (9) Fy =lY1 

LINEARIZATION 
Equations (8) and (9) show that the relationship be
tween the reduced order current vector I and the 
forces produced is quadratic. In general, the bearing 
must be able to generate forces in an arbitrary di
rection. Fx and FlI must therefore be independent of 
one another, and each force should be able to be gen
erated with an arbitrary sign. The latter condition 
is relatively easy to establish by simply examining 
the definiteness of the symmetric matrices X and 
Y. If any of these matrices is either semi-definite, 

the corresponding quadratic product will always be 
either non-negative or non-positive. An arbitrary 
force cannot then be realized. 
If both X and Yare indefinite, then there may exist 
matrices W so that 

I=W{ 
Cb 

}=W< CX (10) 
ey 

and 

Fx = f'W'XW f = Cb Cx (11) 

Fy = f'W'YW f = Cb cy (12) 

In matrix form, the desired separation in (11) and 
(12) can be obtained if 

[ 1 
1 0 

1 
W'XW 0.5 0 0 

0 0 

(13) 

[ ; 0 n W'YW 0.5 0 
0 

This form implies that the first column of W is 
the biasing current vector, the second column is the 
control current vector for the Fx , and the last col
umn of W controls the F y • Clearly, (13) represents 
twelve coupled quadratic equations in 3 x m equa
tions where m is the number of elements in 1. Thus, 
I must have at least four elements in it in order to 
permit solutions of (13): the stator must have at 
least five poles and at least four independent coils. 
Assuming that a matrix W can be found which sat
isfies (13) then the inverse current-to-force relation
ship which permits linear bearing force control is 

{ 2} 1 Cb 

1= -KW Fx 
Cb F. 

y 

(14) 

Since the derivation of matrices X and Y imposes 
no restrictions on stator geometry, (13) is a general 
statement of the bias-linearization problem for ra
dial magnetic bearings. Any matrix W satisfying 
(13) will permit independent linear control over the 
orthogonal force components produced by a given 
bearing via the currents specified by (14). 
A closed-form solution of (13) has not been found. 
At present, linearizing matrices may only be ob
tained numerically. Generally, the approach is to 
pose the problem in vector form and solve the re
sulting nonlinear equation using a gradient descent 
algorithm. Details of the solution method can be 
found in [9]. 
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CHOICE OF OPTIMAL W 
For most magnetic bearings, the problem defined 
by (13) has many solutions. Therefore, a criterion 
must be established for selecting the best solution. 
One such measure is the maximum load which the 
bearing can generate before magnetic saturation oc
curs at some point on the stator or rotor. 
To determine saturation in the stator, the fluxes in 
the legs, back-iron, and journal iron must all be com
puted. If the pole areas are equal to the air gap ar
eas, then the pole flux densities are simply equal to 
the gap densities: 

Bp =B (15) 

Most of the back iron flux densities can be found 
from the n - 1 independent conservation of flux con
ditions: 

The one remaining equation required is most prop
erly obtained by applying Ampere's loop law to the 
back iron: 

n 

LBb,jLj = 0 
j=l 

(17) 

However, as the circuit begins to saturate, the per
meabilities of the back iron sections with higher flux 
density will begin to decrease. This will produce a 
redistribution of flux density which tends to mini
mize the peak flux density in the back iron, subject 
to conservation of flux. 1 On the basis of this heuris
tic argument, it may be best to solve these equa
tions in such a manner as to minimize the peak flux 
density. The simplest approximation to this kind 
of solution is provided by the Moore-Penrose pseu
doinverse. Summarize (16) as 

(18) 

Using the Moore-Penrose pseudoinverse results in 

The journal flux densities can be computed in a sim
ilar manner, leading to 

(20) 

lOf course, as the iron starts to saturate, flux leakage will 
also increase, reducing the validity of the simple conservation 
of flux conditions used here. 

The transformation from the reduced order current 
vector to the distribution of flux densiti~s through
out the stator can then be defined as: ' 

V. == [ AI~p 1 V 
AJAp 

(21) 

Rather than computing the saturation load directly, 
compute the flux density distribution for a force of 
magnitude 1.0 and arbitrary orientation e: 

Fx = cose, Fy = sine (22) 

If the parameters Cx , and cy are chosen according to 

cos e sine 
Cx = --, c y = --

Cb Cb 
(23) 

then the desired force of magnitude 1.0 and direction 
e will result. The flux distribution throughout the 
stator resulting from any selection of Cb and e is 
given by 

,1 { B.(Cb' e, W) = V.I. = -V. W 
Cb 

C~ } cose 
sine 

(24) 

The maximum magnitude of the resulting flux den
sity distribution is 

The achievable load capacity is then 

( Bsat ) 2 
Fmax(Cb, e, W) = B ( e W) max Cb, , 

(26) 

where Bsat is the saturation flux density of the mag
net iron. 
The achievable load capacity is dependent upon the 
choice of Cb and e. Typically, it is conservative to 
base the load capacity upon the worst case orienta
tion: 

Bmax(Cb, W) = mt-x IB.(Cb' e, W)loo (27) 

This choice might be modified for systems where a 
gravity load or some other load with fixed orienta
tion is significant. Further, the choice of Cb is es
sentially free; it should be chosen in such a manner 
as to minimize the peak flux density (and thereby 
maximize the load capacity): 

Bmax(W) = min max 1~(Cb, e, W)loo (28) 
Cb e 

In this manner, the best solution W* is that which 
minimizes Bmax (or maximizes Fmax): 

Bmax = min min max IB.(Cb, e, W)loo (29) 
W_W. Cb e 
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'rhe minimax problem defined by (29) along with the 
constraint equation (13) forms a nonlinear optimiza
Lion problem for selecting W. At present, the only 
computational approach is to find many examples 
which satisfy (13) using the method mentioned pre
viously from random seeds and then choose the best 
solution on the basis of (29). While this procedure 
yields usable solutions, there is no guarantee that 
these solutions are optimal or even represent local 
optima. However, it is unlikely that a single gradi
ent descent optimization will yield a global optimum 
because the solutions for Ware not necessarily con
nected. 

EXAMPLES 
Two examples will be explored in order to illustrate 
the concepts developed above. The first example 
considers a highly asymmetric stator while the sec
ond considers coil failure in an otherwise symmetric 
stator. 

Stator Asymmetry 
In the past, the problem of determining bias and 
control currents was only considered for symmetric 
cases. Under these conditions, the proper linearizing 
currents are obtained by inspection. However, when 
symmetry is lost, the determination of the proper 
currents is no longer a trivial problem. Take for 
example the six pole bearing pictured in Figure 1. 
The geometry of this bearing is described in Table 1, 
where A = 1 cm2 , go = 1 mm and N = 200. 
Substituting the geometric parameters into (3) gives: 

g. [: 

-1 0 0 

o 0 1 
1 -1 0 o 0 
0 1 -1 o 0 B = 

1'0 0 0 0 1 -1 0 -
0 0 0 0 1 -1 
1 2 2 1 1 2 

[1 -2 0 
0 0 

l 
o 2 -3 0 0 

N 0 0 3 -2 0 
o 0 0 2 -1 o -
o 0 0 0 1 -2 
o 0 0 0 0 0 

By the geometry of the stator, the matrices C and 
S are 

C = ~diag [1.00, 0.684, -1.147, -0.940, -0.50, 1.286] 
21'0 

s = ~diag [0.00, 1.879, 1.638, 0.342, -0.866, -1.532] 
21'0 

Because this stator has an independent coil on each 
leg, one coil will be redundant: matrix N is singu
lar. This singularity can be removed with a suitable 

Table 1: Asymmetric bearing properties 

Leg (J Area Turns Gap 
1 00 A N go 
2 700 2A 2N go 
3 1250 2A 3N go 
4 1600 A 2N go 
5 2400 A N go 
6 3100 2A 2N go 

K matrix. The K matrix should have columns or
thogonal to the null space of N so that the power 
dissipation required to achieve a given set of flux 
densities is minimized. One such matrix is 

-0.894 0.1278 0.1688 0.244 0.0915 
K = 0.0 -0.958 0.1125 0.1625 0.0610 [ 

0.447 0.256 0.338 0.488 0.18291 

0.0 0.0 -0.919 0.244 0.0915 
0.0 0.0 0.0 -0.786 0.1829 
0.0 0.0 0.0 0.0 -0.955 

The force-current relationships are specified by (8) 
and (9) as: 

1.865 0.983 -0.395 
1.865 -12.88 5.99 2.49 0.862 

X = 0.983 

[ 4.76 

5.99 -7.67 1.203 

-3.11] 
2.13 

-0.395 2.49 1.203 -1.196 1.731 
-3.11 0.862 2.13 1.73 8.08 

-9.83 -2.48 -0.1747 
-9.83 23.7 -2.95 0.426 0.464 [ 9.68 

Y = -2.48 -2.95 3.96 0.444 

_0."'] 
0.817 

-0.1747 0.426 0.444 -1.891 0.673 
-0.533 0.464 0.817 0.673 -8.58 

This bearing can be linearized if a 5 x 3 matrix W 
can be found which satisfies (13). Such a matrix can 
be found through a numerical search. For example, 

[ 0.1363 
-0.314 

0.611 ] 0.205 -0.0433 0.233 
W= 0.462 -0.409 0.674 

0.697 0.261 -0.475 
-0.0278 0.227 -0.1587 

is one linearizing solution satisfying (13). The phys
ical coil currents are then specified by (14) as 

II = 0.604cb - 0.1210Fz/cb + 0.300Fy/Cb 

12 = 0.150Cb + 0.291Fz/cb - 0.533Fy/Cb 

13 = -0.0329cb + 0.0517 Fz/Cb - 0.235Fy/Cb 

14 -O.257cb + 0.461Fz/Cb - 0.750Fy/Cb 

15 = -0.553cb - 0.1636Fz/cb + 0.344Fy/Cb 

16 = O.0266cb - 0.217 Fz/Cb + O.152Fy/Cb 

The best value of Cb depends upon the physical pa
rameters of the stator including A, N, and the sat
uration flux density. 
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Coil Failure 
Aside from linearizing unusual stator geometries, the 
procedures are more practically useful in developing 
fault-tolerant controllers for bearings with a large 
number of coils. Consider a conventional 8-pole sym
metric bearing with each pole face having an area 
of 4.9110-4 m 2 , a nominal gap of 0.001 m, and 200 
turn coils. In this example, the flux path areas in 
the back iron and in the journal are the same as the 
pole face area. 
In the normal operating mode, coils on all 8 legs 
would be operational. This configuration allows for 
the linearizing current set 

2 2 0 
-2 -v'i -v'i 
2 0 2 

W 
go -2 v'i -v'i 

4N.,[ii;A 2 -2 0 
-2 v'i v'i 
2 0 -2 

-2 -v'i v'i 
which yields a load capacity of 562 N at a saturation 
density of 1.2 Tesla. 
This stator can be linearized (solutions to (13) can 
be found) for coil failure configurations involving any 
one, two, or three coils. In addition, the stator can 
be linearized with four coils failed as long as the four 
coils are not all adjacent. As an example, consider 
the case where coils 1, 2, and 3 have failed. In this 
case, 

o. o. o. 
o. o. o. 
o. o. o. 

W 
go 5.09 0.359 3.32 

4N.,[ii;A o. 3.68 3.68 
o. 3.68 3.68 
o. 3.68 3.68 

5.09 3.32 0.359 

solves (13), but the load capacity is reduced to 256 N 
which is forty six percent of the capacity when all 
coils are functional. 

CONCLUSIONS 
An analysis has been described for linearizing and 
decoupling the force axes in complicated magnetic 
actuators. Using this analysis, a simple linear rela
tionship can be found which relates the desired force 
components and an additional fixed biasing term to 
the best set of coil currents. Since the analysis is not 
limited to a specific geometry or number of actuator 
force components, it can be applied to asymmetric 
stators, stators with failed coils, and stators which 
generate more than the usual two orthogonal force 
components. 

In additio~, a clear mechanism has been demon
strated for ~chieving fault tolerance to coil failures. 
If one or more coils fail, a new coil current control 
scheme can usually be constructed which preserves 
the linear relationship between required forces and 
coil currents. This fault tolerance comes at some 
expense in load capacity because the necessary re
distribution of magnetic flux in the stator in order 
to achieve high forces along vectors passing through 
the poles of the failed coils leads to premature satu
ration in the stator or journal. 
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