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ABSTRACT 
This paper proposes a design method which 

synthesizes the optimum design of the rotor struc
ture, the control system, and the magnetic bearing 
simultaneously. We first derive the model of the 
electromagnetic bearing-controlled rotor system. A 
criterion based on minimizing the rotor response 
and the control current is then used to seek the 
optimum bearing dimensions. This criterion needs 
to solve the Riccati equation. The constraint on 
the peak rotor time response, the control current, 
and the flux density of the bearing's stator are 
included in this study. Sensitivity analysis of both 
the cost function and the constraints are also de
scribed. Numerical analysis shows the effect of 
different weightings and the superiority of this 
design methodology. 

NOMENCLATURE 
Ag effective cross section area of air gap 
Bsat saturation magnetic flux density of 

core material 
Dmax the maximum allowable diameter of 

the stator. 

Fd 
Fu 
Fl"'Fs 
G 
h,s,Wm 
Ib 

outer diameter of the stator 
diameter and thickness of disks #1, 
#2 
displacement of rotor at location of 
electromagnet n, n=1",8 
impulse loading 
unbalance loading 
electromagnetic forces 
size of air gap 
dimensions of the bearing's pole piece 
bias current 

Iu 

'i1 

maximum available current provided 
by the current driver 
control current corresponding to elec
tromagnet n, n=1",8 
optimal feedback gain matrix 
locations of the disks #1, #2, and #3 
inertia, damping, and stiffness matri
ces 
turns of coil winding around a pole 
weighting matrices for state and input 
displacement of rotor disk #3 
half of the span angle between the two 
pole ribs of an electromagnet 
ratio of maximum rotor deviation to 
the air gap size 
design variable 
permeability of free space, 411'*1.0e-7 
rotating speed of the rotor 

Superscript and Subscript 
( • ) t transpose 
( • ),€, derivative with respect to ~ 

INTRODUCTION 
Magnetic bearings are newly-risen field inter

esting researchers majoring in electric and mechanic 
engineering. For most of the applications, the 
needs of low vibration and large load capacity are 
two major targets pursued by the magnetic bearing 
designers. 

A large part of papers focus the issue on the 
design of can trollers; they take the magnetic bear
ing as an actuator with known properties, and then 
try to seek the appropriate controller [1-3]. 
Another part of papers investigate the bearing 
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FIGURE 1: The Rotor-Bearing System 

characteristics [4,5]. However, a successful design of 
the magnetic-bearing-suspended rotor system relies 
on both the bearing itself and the controller. Thus, 
we synthesize the optimum design of the rotor 
structure, the control system, and the magnetic 
bearing simultaneously. Based on such a methodol
ogy, we can get designs that contain less mass and 
use less control effort than those achieved by iter
ating between structural and control synthesis. 
Also we can handle the cross-coupling effects and 
dynamic interactions between the structures and 
the control systems. 

The system analyzed here is shown in Fig. 1. 
Because of the misalignment during assembling 
process or the key of 'the rotor shaft, unbalance 
load usually exists when the rotor is rotating. In 
addition, a rotor system immune from impulse 
disturbance or capable of quickly return to its 
central position is highly desirable. A good mag
netic bearing suspended rotor system is thus capa
ble of minimizing the effect of unbalance loading 
and impulse disturbance with as small control effort 
as possible. So we try to seek the most proper 
dimensions and locations of the magnetic bearings 
to reach the objectives mentioned above. 

SYSTEM MODELING 
The magnetic bearing force is obtained by 

providing a large bias current to each coil winding 
and a regulating current accommodating the rotor 
displacement to the corresponding coil winding. By 
assuming no flux leakage and neglecting the reluc
tance of soft iron and the phenomenon of fringing 
effect, we. express the magnetic force as a nonlinear 
function of coil current and gap length, as follows: 

p,oAgN2(lb+in)2cosa (1) 
Fn= {G-dn"cosa)2 ,n=IN 8 

In Eq. (1), the number of turns of the coil 
windings N and the effective cross section area of 

FIGURE 2: Dimension of the Magnetic Pole Piece 

the air gap Ag are two quantities that should be 
related to the design variables. Figure 2 shows the 
effective slot space in our design (the hatched 
region); the dimensions of the magnetic bearing are 
also shown here. By experience, the most effective 
winding space is about eighty percent of the effec
tive slot space in which the copper wire can be 
arranged tightly. We can approximate the most 
effective winding space as a trapezoid region, which 
we express as follows: 

Aw=O.B(( dmb+2G+2s+h)sina- Wmcosaj" h" cosa (2) 

Thus N can be obtained from dividing Aw by the 
cross section area of the copper wire Aeoil, i.e., 

N = O.5Aw/ Aeoil (3) 
Evaluation of Ag can be obtained by 

Ag = c" tmb" Wm (4) 
where the factor c is the ratio of Ag to the mlm
mum cross section area of the pole piece (c is taken 
as 1.2 in this study). 

In the control circuit, we let the control cur
rents of the eighth electromagnets satisfy the fol
lowing relations: 

i7 = -i5, is = -i6 (5) 
To provide a magnetic force balancing the rotor's 
weight, we let the vertical direction coils carry 
additional part of static control current, that is 

i2=i2+i20, i6=i6+i60 (6) 
To simplify the analysis, we let the two magnetic 
bearings have the same dimensions and the same 
characteristics. Also we assume the rotor as a rigid 
body. By linearizing the bearing force equation 
and deriving the equation of motion in the trans
verse direction for the mass center of the rotor 
system, with these equations expressed in terms of 
the displacements at bearing's locations, we have 

MY+ CY+ SY= BU 
where 

(7) 
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':he inertia matrix M, damping matrix C, and 
~Itiffness matrix S are all functions of the design 
variables. Matrix C is also a function of the rotor's 
rotating speed. 

Representing Eq. (7) in state equation form, 
we have 

X=AX+BU 
where 

A =[-M~'S _:,j 
B=[;'n] x= m 

OPTIMAL CONTROLLER 

(8) 

A quadratic performance index based on the 
compromise of the magnitude of both the system 
state and the control effort is used in the optimal 
regulator theory. It is 

Jp = J:CJJ(rQX + utRU) dt (9) 
o 

where Q and R are weighting matrices. The matrix 
Q must be symmetric and positive semidefinite; the 
matrix R must be symmetric and positive definite. 
The optimal state feedback control which minimizes 
the quadratic performance index, while satisfying 
the state Eq. (8), is 

* * U (t) = - K·X (t) (10) 

* * where U (t) is the optimal control in pu t and X (t) 
is the corresponding state. The feedback gain 
matrix K is given by 

K = R-1Btp (11) 

where matrix P is the solution of the algebraic 
Riccati equation 

(12) 
and P is a symmetric positive semidefinite matrix. 
When the optimal feedback control is adopted, the 
resulted closed loop system is asymptotically stable. 

WEIGHTING MATRICES 
Selection of weighting matrices Q and R is 

arbitrary except that the requirement of positive 
definiteness must be satisfied. Two common ways 
of selecting Q and R used in optimal control are 
[Choice I] 

R = 6·1 (13) 

[Choice II] 

Q = [qlS OJ, R = 6·1 (14) 

° q2M 
where qi, i=I,· .• ,2n, and 6 are scaling parameters 
that can be adjusted to control the amplitude of 
the dynamic response, the settling time, and the 
amplitude of the control current. In choice I, we 
minimize the weighted sum of the control effort 
and the rotor's vibrations; where we assume that 
the energy supplied to the rotor-bearing system is 
proportional to the control current and the influ
ence of vibrations is evaluated by the squares of the 
rotor's displacement and velocity. In choice II, we 
minimize the weighted sum of the control effort, 
the system's potential energy, and the system's 
kinetic energy. However, because the stiffness 
matrix S is not positive definite (the uncontrolled 
rotor-bearing system has a negative spring con
stant), the requirement that Q must be at least 
semipositive definite is violated. Thus we adopt 
the choice I in the following analysis. 

SYSTEM RESPONSES 
In practical rotor-bearing systems, the occur

rence of mass unbalance is usually unavoidable, and 
its effect should be considered especially at high 
rotating speeds. In our problem, we assume that 
the mass unbalance of the disks #1 and #2 used 
by the two magnetic bearings and the rotor disk 
#3 are located at a distance of el, e2, and e3, 
respectively, from their geometric center. The 
corresponding state equation is 

X= AX+ BU+ Fu (15) 
where Fu is the unbalance load vector acting on the 
center of gravity of the rotor-bearing system. 
Generally Fu consists of both the force and the 
moment, and Fu is dependent on both the structure 
variables and the locations of the magnetic bear
ings. Because the unbalance loading is closely 
related to the rotating speed, Fu is also function of 
w. In this study, we assume that the unbalance 
loading caused by the mass unbalance of the two 
magnetic bearings and by that of the rotor disk are 
in phase. Because Fu is in sinusoidal waveform 
with frequency W, we can express Fu in complex 
form: 

(16) 

Because the z and y components of the unbalance 
force are in cosine and sine form, respectively, Fs is 
a complex vector. Using the linear feedback control 
rule obtained from Eq. (10), the steady state solu
tion of Eq. (15), Xss, can be expressed as 
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. uJt 
xss = Re(XseJ ) 

From Eqs. (15)1\1(17), we have 

Xs = (jwl - Ac)-lps 
where 

Ac=A-B·K. 

(17) 

(18) 

The time response of the unbalance/impulse 
loading can be obtained by directly solving the 
closed loop state equation 

X= AcX+ P (19) 
where for the case of impulse loading, P=Fd, while 
for the case of unbalance loading, F=Fu. In both 
cases, zero initial condition is used here. 

OPTIMIZATION PROBLEM 

C08t Function 
The main objective of this study is to mini

mize the displacement of the rotor disk #3 when 
impulse loading or unbalance loading exist. In the 
case of impulse loading, we evaluate the maximum 
rotor displacement. In the case of unbalance 
loading, we evaluate the steady state response. We 
then seek a set of design variables ID and an optimal 
control input U, so that the maximum deviation of 
the rotor disk #3 is minimized. Thus, the cost 
function is defined as 

J = min (max (:z:~ + y~) 112) (20) 
ID, U 

Constraint 
In the practical design of an electromagnetic 

bearing, we encounter a number of restrictions due 
to the peripheral equipment or the bearing itself. 
These restrictions interfere with one another; for 
example, we may require larger load capacity, but 
the flux density will be saturated if the number of 
ampere-turns is too large. Therefore, we must find 
a compromise between these design constraints. 
The constraints used in this paper are listed as 
below: 
(1) Flux density constraint 

Bmax ~ Bsat (21) 
(2) Coil current constraint 

Imax ~ Iu (= 6 A) (22) 
(3) Peak time response constraint 

Xmax ~ 'rIG (23) 
(4) Maximum diameter of stator constraint 

Ds ~ Dmax 
Ds=dmb+2G+2(s+h+1.1 Wm) (24) 

(5) Pole width constraint 
Wm~[( 0.5dmb+G)· sina-1.5G· cosa]/ 0.6 (25) 

(6) Constraint for the locations of the two magnetic 

bearings 
Ll < L2 (26) 

Constraints for the diameters of the rotor sl'iaft 
(7) ds ! ~ dmb 
(8) ds2 ~ dmb 
(9) ds3 ~ dmb (27) 

Sensitivity Analysis 
Sensitivity analysis is necessary to obtain the 

solution of the optimization problem. Sensitivity of 
the cost function is evaluated by taking the deriva
tive of Eq. (20) with respect to the design variable 
C i.e., 

dJ 
J,~ = ~ (28) 

To get the sensitivity of cost function, we need to 
evaluate the sensitivity of the optimal feedback 
gain, which is obtained by evaluating the derivative 
of Eq. (11): 

K -K1Bt P+R-1Btp -R-1R R-1Btp 
,~- ~ ,~,~ (29) 

- -t -
P,~A + A p,~ + R = 0 (30) 

in which 

.A = A - BR-1Btp 

- t -1 t 
R = Q,~ + PA,~ + A,~P - P(BR B ),~P 

The sensitivity of constraints (4)1\1(9) in previ
ous section is obvious and thus is omitted here. To 
obtain the sensitivity of the constraints (1)1\1(3), we 
need to compute the sensitivity of both the time 
response and the control input current. The time 
response sensitivity is evaluated by taking the 
derivative of the Eq. (19). Note that we just need 
to compute X,~ at the specified time of occurrence 

of Bmax, I max, and Xmax, respectively. The sensi
tivity of the control input is given by (using Eq. 
(10)) 

* * * U,~ = -K.~X - K.X,~ (31) 

Thus we get all the required sensitivity information. 

NUMERICAL ANALYSIS 
Table 1 shows the design variables and the 

design data assigned to the rotor-bearing system. 
In the following analysis, we let the scaling parame
ters of the weighting matrix Q have the same value, 
i.e., Ql=Q2= ... =q. The optimization program 
MOST [6] is used to seek the solution and the 
MATLAB software is used to solve the Riccati 
equation and the time response. All the analysis is 
implemented on a 486 PC. For the optimization 
problem discussed previously, we have one cost 
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TABLE 1: Design variables and design data 

design variable upper-bound lower -bound 

dmb (m) 0.030 0.080 
L1 (m) 0.030 0.175 
L2 (m) 0.185 0.320 
tmb (m) 0.005 0.030 
Wm (m) 0.010 0.030 
h (m) 0.005 0.060 
dS1 (m) 0.010 0.025 
dS2 (m) 0.010 0.025 
ds3 (m) 0.010 0.025 

design data value 

Dmax (m) 0.14 
Bsat (tesla) 1.2 
d3 (m) 0.06 
L3 (m) 0.36 
t3 (m) 0.02 
s (m) 0.0015 
a (degree) 22.5 
G (m) 0.0008 
Ib (A) 1.2 
Aeoil (m2) 2.82743e-7 
Iu (A) 6.0 
IJJ (rpm) 10000 
;1 0.2 

function, nme constraints, and mne design vana
bles. 

There are fourteen cases investigated here. 
Cases 1-7 investigate the impulse loading 
condition, and cases 8-14 investigate the unbalance 
loading condition. Because of the page limitation, 
we only show the results of cases 1-3 and cases 
8-10. In cases of impulse loading, the rotor disk 
#3 is subjected to a z-1iirection impulse load ixd. 
Cases 1-3 investigate the effect of different set of 
scaling parameters q and 8 on the optimum design. 
We conclude that a larger ration of qj 8 causes a 
smaller optimal cost. The time histo ry of the 
displacement of rotor disk #3 and the control 
currents i1, i2, i5, and i6 for cases 1-3 are shown in 
Fig. 3. It can be seen that a larger ratio of q/6 
causes a smaller peak rotor displacement. However, 
a larger ratio of q/8 causes a time delay for the 
rotor to return to the central position and the corr
esponding peak control currents are usually larger 
than in cases of smaller qj 8, which may be unavai
lable for practical implementation. Note that the 

- -
currents i 2 and i 6 are non-zero because the gain 
matrix K is a full matrix, that is, the control in :I: 

and y directions are coupled. Thus y-

3.5 0.2 
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2, 
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FIGURE 3: Time History (curve a:case1, q=l, 
6=10; b:case2, q=l, 8=1; c:case3, q=10, 8=1) 

20 

direction rotor displacement appears though the 
system is subjected to z-1iirection impulse load only. 
The induced y-direction rotor displacement and the 
corresponding control current are smaller when a 
large ratio of qj8 is used. Note that, this induced 
displacemen t is small compared with the principle 
direction (z-direction) rotor displacement, and thus 
the induced displacement is of little significance. 
To see the merit of current optimum design, we 
further investigate three cases, in which the addi
tional constraint for specific shaft diameters, bear
ing locations, and bearing dimensions are imposed 
on case 4, 5, and 6, respectively. Compare these 
result with the current optimum design (case2), we 
can verify the superiority of the current optimizati
on method: the current design has smaller cost, 
quick time response, and smaller control current. 
The effect of different magnitude of impulse loading 
is investigated in case 7. As is expected, we need a 
larger bearing to accommodate the larger impulse 
loading. The final design for all cases show a 
similar trend in the final design structure, where we 
see the best use of the bearing dimensions and 
locations. 

For cases of unbalance loading, we let the 
misalignment of the disk #1, #2, and #3 satisfy 
the specified ratio 1:1:2. Cases 8, 9, and 10 indi
cate that a larger value of the ratio qj 6 causes a 
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FIGURE 4: Time History (curve a:case8, q=l, 
8=10; b:case9, q=l, 8=1; c:case10, q=10, 8=1) 

smaller optimal cost . The corresponding time 
history of the rotor displacement and the control 
currents shown in Fig. 4 also demonstrate the 
preference of choosing a larger q/8. However, the 
cases of impulse loading show that a larger q/8 
causes a larger peak control current and a longer 
time delay. There should be a compromise for 
choosing q and 8. We also compare the time histo
ry for cases of the current optimum design (case 
10), the specified shaft, the specified bearing loca
tions, and the specified bearing dimensions. As is 
the same conclusion for cases of impulse loading, 
the results also demonstrate the superiority of the 
current optimization method. By investigating the 
effect of different magnitude of unbalance loading, 
we conclude that a larger size of magnetic bearing 
is also needed to accommodate the larger unbalance 
loading. 

Experience in seeking the optimal solution for 
cases of impulse or unbalance loading indicates that 
the constraints on flux density and peak time 
response are active most frequently. For cases of 
larger loading, the maximum diameter of stator 
constraint is active sometimes. 

CONCLUSION 
A three-disk rotor-bearing system is illustrated 

for this integrated optimal design meth~d. By 
using this method, we find a rotor-bearing system 
that is capable of minimizing the effect of unbal
ance loading and impulse disturbance with as small 
control effort as possible. 

Numerical result demonstrates the superiority 
of this method. Analysis shows that a larger q/8 is 
preferred for a better unbalance loading response 
but a compromise in choosing q and 8 is needed for 
the disturbance loading response. This analysis 
method can be extended to flexible rotor systems 
via incorporating the finite element method. 
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