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ABSTRACT 
Rotor unbalance is most often the primary cause of 
unacceptable vibration in rotating machinery. Over the 
last decade, researchers have explored different methods 
of taking advantage of the active nature of magnetic 
bearings to attenuate unbalance response including both 
feedback and adaptive open loop methods. In this paper, 
the authors examine the performance of a particular 
adaptive open loop control algorithm known as 
convergent control. The stability and perfomlance 
robustness properties of this algorithm are examined both 
theoretically and experimentally and are shown to be 
quite good. Experimental results also indicate high 
performance in vibration attenuation, and quick 
adaptation to changes in the imbalance condition and 
rotor speed. 

INTRODUCTION 
Many authors have investigated methods for reducing the 
unbalance response of rotating machinery using magnetic 
bearings [1-5]. The methods employed fall into two 
categories: feedback methods and open loop (or 
feedforward) methods. While both methods can be used 
to greatly reduce the machine unbalance response, the 
open loop methods have the distinct advantage of not 
affecting system stability. Thus, the open loop method 
can be employed on any rotor system and at any 
operating speed. 

The performance of a truly open loop control strategy 
relies on the accuracy of a pre-computed schedule of 
control action since this schedule cannot be corrected 
based upon resulting performance. This accuracy is 
dependent on (1) a priori knowledge of the system 

dynamics, and (2) knowledge of future disturbances to 
the system. The inability to correct an incorrect schedule, 
can be overcome by re-computing the schedule 
periodically. lithe length of the schedule is much longer 
than the largest time constant of the system (i.e., closed 
loop system for magnetic bearings), this adaptive 
algorithm can still be thought of as a true open loop 
controller. While this controller could also be viewed as 
a very slow, nonlinear feedback controller, this paradigm 
is not very useful in designing such controllers or in 
analyzing their behavior. 

In tIils paper, an adaptive open loop control algorithm is 
proposed. A general theoretical framework for the 
performance of the algorithm is also presented in Section 
2. Stability and performance robustness of the algorithm 
is considered in Section 3. In Section 4, experimental 
results for the algorithm are obtained from a laboratory 
test rig using a digital controller. This work builds on 
that previously presented by the authors in fn 

ADAPTIVE OPEN LOOP CONTROL: THE 
CONVERGENT CONTROL ALGORITHM 
The concept of the adaptive open loop control is quite 
simple: synchronous perturbation control signals are 
generated and added to the feedback control signals so as 
to cancel rotor synchronous response. These synchronous 
signals consist of sinusoids that are fixed to the shaft 
angular position via a keyphasor signal. The magnitude 
and phase of these sinusoids is periodically adjusted so as 
to minimize the rotor's unbalance response. These 
updates occur slowly in comparison to the decay of the 
rotor's transient response. For this reason, this method 
can be considered as the adaptation of a set of open loop 
signals. 
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The primary issue in employing this method is how to 
update the magnitude and phase of the open loop signals 
so as to minimize the synchronous vibration. Any 
method to be employed should have quick convergence to 
the minimum vibration, be computationally quick, and 
should have good stability and performance robustness. 
Here, we examine a simple algorithm, called convergent 
control, which satisfies these requirements. 

The rotor vibration can be related to the applied open 
loop signals via 

where X is a n-vector of the synchronous Fourier 
coefficients of the n/2 vibration measurements, U is a m
vector of the synchronous Fourier coefficients of the m/2 
applied open loop signals, Xo is a n-vector of the 
synchronous Fourier coefficients of the uncontrolled 
vibration, and T is a nxm matrix of influence coefficients 
relating the open loop signals to the measurements. 

Since the open loop algorithm updates the control vector 
U periodically, the subscript i will be used to denote the 
i'th update. The time between the i'th and i+ 1'th update is 
referred to as cycle i ofthe algorithm. During cycle i, the 
control U/ is applied resulting in the vibration XI' This 
vibration vector is computed early during cycle i using 
the measurements from the position sensors. This 
vibration vector is related to the cycle i control vector by 

(1) 

where T is assumed to be changing very slowly and 
therefore is not subscripted. During cycle j the next 
update of the control vector Ui+l must be computed from 
the information available in cycle i (i.e., U/ and X). If 
we assume that the change in X 0 between cycle j and i+ 1 
is unknown and has zero mean 

then the optimal control vector Ui+l can be found that 
minimizes the quadratic performance function 

where E{} is the expected value operator. The optimal 
control law is given by 

(2) 

The optimal control law is derived by setting the first 
variation of the performance index with respect to Ui +1 

equal to zero (see Appendix) 
/ 

The matrix T for a particular operating speed can be 
estimated off-line through either (1) the injection of 
frequency rich noise when the rotor is supported but not 
spinning, or (2) the injection of synchronous test forces 
when the rotor is spinning. The second method, while 
more time-consuming, will accurately account for the 
effect of gyroscopics on the influence coefficient matrix. 
For the rotor considered in Section 4, gyroscopics are not 
a significant effect and both methods of identification 
yield good performance. 

The off-line identification results in a set of estimated T 

matrices { ~ , i; , ... '4 ' ... , T M} associated with a set of 

operating speeds n == {(j) I ,(j) 2 ' ••• (j) Ie ' ••• (j) M} which span 

the operating speed range. Each of these matrices is then 
used to compute a gain matrix Ale for the associated 
operating speed (j) Ie 

When the rotor is operating at speed Cll, the A matrix used 
in updating the control vector is determined by an 
element-wise linear interpolation of the A matrices for 
the operating speeds in the set n immediately above and 
below ffi 

(3) 

As will be shown later, this interpolation results in better 
performance than if the A matrix for the nearest 
operating speed is used. 

STABILITY AND PERFORMANCE ROBUSTNESS 
The stability and performance robustness of the linear 
discrete time system governed by Eqns. (1) and (2) can 
be easily analyzed. Simplifying these two equations 
yields either 
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or 

The stability of these equations is obviously governed by 
the eigenvalues of [1+TA] and [I+AT] respectively. For 
stability, all the eigenvalues must be inside the unit circle 
in the complex plane. Another way of expressing this, is 
to require that the 2-norm of XI+1 be less than the 2-
norm of XI 

or that 

u(1 +TA) <1 

where u(.) is the maximum singular value. 

Additionally, the maximum singular value can be used to 
measure performance. The slowest rate of decay in the 
magnitude of the vibration vector is given by· the 
maximum singular value of [1 + TA] 

<5(A,T) == u(1 +TA) 

IIXI+III2 = <5(A,T)IIXI II 

where 8 is called the decrement. If the matrix T is square 
(the number of vibration measurements used is equal to 
the number of bearing axes), then the vibration vector 
will converge to zero if the decrement is less than 1. This 
can be used to prove the following theorems for stability 
and performance robustness. 

Theorem 1: Stability Robustness to Additive Error in 
Estimate 
If the error in the estimate of T is given by the additive 
error matrix E a 

then the discrete time system will be stable and the 
vibration will converge to 0 if 

where Q:(.) is the minimum singular value. 

Theorem 2: Stability Robustness to Multiplicative 
Error in Estimate 
If the error in the estimate of T is expressed as either a 
multiplicative input error matrix E: or a multiplicative 

output error matrix E~ 

or T = [1 +E~]f 

then the discrete time system will be stable and the 
vibration will converge to zero if 

_( 1) 1 
u Em < K(f) or 

where K(.) is the condition number. 

Note that an error in the estimate of a square T does not 
degrade the steady state performance of the algorithm if 
discrete time system stability is maintained; the vibration 
vector continues to converge to zero. However, the rate of 
convergence, another performance measure of interest, 
will be affected. 

Theorem 3: Performance Robustness to Errors in 
Estimate 
For the error matrices described above, the discrete time 
system vibration will converge to zero with a rate given 
by the decrement 8 if any of the following conditions on 
estimate error are satisfied 

u( Ea) ~ Q:( f)<5 

_( 1) 1 
uEm ~K(f)<5 

u(E~) ~<5 

The above theorems can be extended to treat non-square 
T matrices. In this case, however, convergence may not 
result in the minimum possible value of the performance 
index. 

EXPERIMENTAL RESULTS 
A laboratoty test rig with 2 radial magnetic bearings was 
used to demonstrate the adaptive open loop algorithms 
using a high-speed, multi-tasking digital controller. The 
rotor of this rig has a 12.7 mm (0.5 inch) diameter and a 
508 mm (20 inches) bearing span. Eddy current position 
sensors are located vertically and horizontally 32 mm 
(1.25 inch) outboard from the center of each bearing and 
51 mm (2 inches) inboard from the center of the mid 
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span disk. The first three critical speeds of this machine 
are at 2700, 4200, and 5500 rpm. Vibration readings 
from all six sensors were used by the adaptive open loop 
algorithm. 

The convergent control algorithm described in the 
previous section was implemented on a digital controller 
designed and built at the University of Virginia's Center 
for Magnetic Bearings [6]. The digital controller is a 32 
bit floating point machine using a Texas Instruments 
TMS320C30 digital signal processor. The control 
algorithms were executed under a multi-tasking real time 
operating system written at the University [7]. One cycle 
of the adaptive open loop process requires approximately 
0.2 seconds to execute. 

In the first experiment performed, the influence 
coefficient matrices were estimated from synchronous 
current injections at 2200 rpm. The robustness of the 
algorithm to errors in T due to changes in operating 
speed was then tested in the following manner. With the 
discrete time gain matrix A set to the optimal value for 
2200 rpm (A 2200 ), the convergent algorithm was started 
at several operating speeds. An experimental value of the 
decrement for each speed co was computed by taking the 
ratio of the magnitude of the vibration vector after the 
first update to that of the uncontrolled vibration. Note 
that this is a lower bound on the theoretical decrement 
o( A2200 ' Til)) since the uncontrolled vibration vector will, 

in general, not be directed in the worst possible direction 
in the vector space. 

This same procedure was used to compute the 
performance robustness to changes in operating speed for 
a T matrix learned at 2700 rpm. The experimental 
decrements for A2200 and A2700 are shown in Figure 1. 
Note that the convergence rate decreases (increasing 
decrement) more rapidly with a change in operating 
speed for the A2700 controller than for A2200 . This occurs 
because the T matrix changes rapidly with speed near the 
first critical, 2700 rpm. From the figure, it can be seen 
that the adaptation process is unstable for theA2200 

controller if the operating speed is greater than 2500 
rpm. Similarly for the A2700 controller the adaptation 
process is unstable if the operating speed is less than 
2600 rpm. 

Employing the linear interpolation given by Eqn. (3) to 
generate theA matrix using A2200 and A2700 for operating 
speeds between 2200 and 2700 rpm yields the third 
decrement curve shown in Figure 1. Notice that the 
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FIGURE 1: Experimental decrement vs. speed 

linear interpolation provides a substantially lower 
decrement (quicker vibration suppression) from 2400 to 
2600 rpm than either A2200 or A 2700 • From these results it 
is clear that a look-up table of influence coefficient 
matrices and linear interpolation between matrices can 
robustify the adaptive open loop algorithm to changes in 
speed and substantially improve its rate of convergence. 

The performance of the adaptive open loop algorithm 
over the operating speed range is now examined. Figure 
2 shows the baseline performance, the vibration 
magnitudes at the midspan, inboard, and outboard 
sensors during a run-up from 1500 to 5000 rpm. As 
shown in Figure 3, the rotor vibration was substantially 
reduced when the 30 second run-up was repeated using 
adaptive open loop control with T matrices learned via 
noise injection at frequencies corresponding to every 100 
rpm. Note that with this control, it is difficult to detect 
the rotor's critical speeds as they are passed. Vibration at 
any particular sensor could be almost completely 
canceled if this signals were weighted more heavily than 
others in the quadratic performance index [1]. 

Figures 4 show the maximum total (feedback plus open 
loop) synchronous current for the inboard bearing during 
the run-up with and without adaptive open loop control. 
Figure 5 shows a similar set of curves for the outboard 
bearing. As these figures illustrate, the benefits in 
vibration control demonstrated in Figure 2 have been 
achieved with a very minor cost in actuator effort. The 
total synchronous current has increased slightly over only 
part of the speed range. In fact, over a portion of the 
operating speed range, both vibration and synchronous 
bearing current have been reduced. 
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FIGURE 2: Vibration over operating speed range 
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FIGURE 4: Inboard current during run-up 

The response of the adaptive open loop controller to a 
sudden change in unbalance was also tested. The change 
in rotor imbalance was simulated on the test rig by the 
addition of unknown synchronous perturbation currents 
to the control signals. Figure 6 shows the uncontrolled 
vibration at the midspan sensor during the simulated 
change in unbalance. The rotor was operating at 2200 
rpm. Figure 7 shows the midspan vibration during the 
same test with the open loop control. Note that the 
synchronous vibration is nearly completely canceled 
before the change in unbalance. The adaptive open loop 
controller requires approximately 0.3 seconds after the 
change to bring the rotor back to the balanced condition. 
(The residual vibration shown consists of harmonics of 
the running speed.) 
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FIGURE 3: Vibration with adaptive open loop 
control 
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FIGURE 5: Outboard current during run-up 
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FIGURE 6: Vibration during change in unbalance 
without open loop control. 
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FIGURE 7: Vibration with adaptive open loop control 
during change in unbalance. 

SUMMARY 
The new theoretical and experimental results presented 
in this paper clearly indicate the efficacy and robustness 
of the convergent control algorithm in attenuating 
machine synchronous vibration. These adaptive open 
loop control methods are ready to be employed on 
industrial machines with digital controllers. 
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APPENDIX: DERIVATION OF OPTIMAL 
CONTROL LAW 

For the performance index given, then substitution of 
Eqns. (1) yields 

J = E{(TV'+ l +xo.+f (TV;+l +xo.+J} 

= E{(TV'+ l +Xo• +Mof (TV;+l +Xo; + Mo.)} 

=E{(TV;+l +X; -TV; + Mo;f(TV;+l +X; -TV; +Mo;)} 

Assuming T is known, this can be simplified to 

+ {terms not iocluding U;~l} 

(The certainty-equivalent controller is derived here; 
uncertainty in T can be included in the derivation 
yielding the cautious controller - see [8] for details) 

Taking the first variation of J with respect to U;~l and 
setting this equal to zero yields 

T T T 
0= T TUi+l +T X; -T TU; 

+TTE{Mo.} 

Now, solving for U;+l gives the optimal control law 

If the expected value of the change in uncontrolled 
vibration is zero, this simplifies to Eqn. (2). 


