DIGITAL CONTROL OF CONICAL MOTION OF HIGH SPEED ROTORS SUSPENDED BY MAGNETIC BEARINGS IN CASE OF LARGE SAMPLING PERIOD

Chikara MURAKAMI
Tokyo Metropolitan Institute of Technology, 6-6,Asahigaoka, Hino-shi, Tokyo 191,JAPAN

Abstract

In this paper,digital control of wxalusively two conical modes of rigid ininning rotor is treated. If,sampling period $T>T n$ where $T n$ is nutation or lirg speed mode (N -mode) period, it is upparent that suppression of that mode becomes difficult. Control strategy is to move low speed mode (P -mode) component of angular momentum vector H of the rotor towards rentral axis position for P-mode suppression, and N -mode component of H lowards the spinning axis for N-mode suppression. In case of $T>T n$, more :sophiscated contro1 law is required. A detailed analysis is given. Several :simulation examples including the cases of $T>T n$ are given showing effectiveness of proposed control law.

1. INTRODUCTON

Digital signal processors (DSPs) are more and more advancing and becoming cheeper. However, to make sampling period including, for example, observer computation small is one of remained difficult problems. If, an advanced software which can suppress two conical modes even in case of $T>T n$ appeared,many analog control circuits will be replaced by DSPs.
Another problem in digital control is the fact that negative restoring or
spring constants to deviation of the rotor which is generated by bias magnetic flux for linearization, is unavoidable.
However, cylindrical or translational motion is rather simple and has no resonance in case of negative spring constants. Therefore,translational motion is not treated in this paper.
At first,discrete systems with zero-order-hold of a controlled model is given using complex number variables on the assumption that tilting angle of the rotor θ and it's rate signal $\dot{\theta}$ are available. Then, solution of two free modes after the end of control torque U are given. The solution is used for finding optimal directions of U for suppression of each mode.

2. CONTROLLED MODEL

Direction of momentum vector, H, of an axi-symmetric rotor viewed from Z-axis of inertia coordinate, $X-Y-Z, i s$ easily obtained from tilting angle, θ, of the rotor axis vector S and it's rate signal, $\dot{\theta}$ which are supposed to be available for control. Direction angles of the two vectors, S and H, from Z-axis are small and can be described by complex numbers S and H on a complex number plane (see Fig.1, underlined letters mean complex numbers), or, they are expressed as

$$
\begin{align*}
& \underline{S}=S x+j S y=\theta y-j \theta \quad x=-j \underline{\theta} \tag{1}\\
& \underline{H}=\underline{S}+I d\left(\dot{\theta}_{x}+j \dot{\theta} y\right) /|H| \tag{2}
\end{align*}
$$

where $\theta \mathrm{x}$ and $\theta \mathrm{y}$ are tilting angle of S about X-and Y-axis, respectively, j is complex number unit and Id is radial moment of inertia of the rotor. Using

$$
\begin{align*}
\dot{\dot{\theta}} & =\dot{\theta} \mathrm{x}+\mathrm{j} \dot{\theta} \mathrm{y} \tag{3}\\
\mathrm{~h} & =|\mathrm{H}| / \mathrm{Id}=\operatorname{Ip} \omega / \mathrm{Id}=\sigma \omega \tag{4}\\
\sigma & =\mathrm{Ip} / \operatorname{Id} \tag{5}
\end{align*}
$$

where $I p$ is polar moment of inertia, and ω is rotation velocity of the rotor, nutation angle \underline{N} is expressed as

$$
\begin{equation*}
\underline{N}=\underline{H}-\underline{S}=\underline{\dot{\theta}} / \mathrm{h} \tag{6}
\end{equation*}
$$

Using these notations and control torque as shown

$$
\begin{equation*}
\underline{U}(\mathrm{kT})=\mathrm{Ux}(\mathrm{kT})+\mathrm{j} U \mathrm{y}(\mathrm{kT}) \tag{7}
\end{equation*}
$$

equation of motion is expressed as

$$
\begin{equation*}
\operatorname{Id} \underline{\ddot{\theta}}-\mathrm{j} H \underline{\dot{\theta}}-\mathrm{K} \underline{\theta}=\underline{\mathrm{U}}(\mathrm{kT}), \quad(\mathrm{k}=0,1,2, \cdots) \tag{8}
\end{equation*}
$$

where K is unstable spring constant due to bias flux.
Dividing Eq. (8) by Id,omitting T, and using small letters:e.g. $\mathrm{H} / \mathrm{I}_{\mathrm{D}} \rightarrow \mathrm{h}$, we get

$$
\begin{equation*}
\underline{\ddot{\theta}}-\mathrm{jh} \underline{\dot{\theta}}-\mathrm{k} \underline{\theta}=\underline{\mathrm{u}}(\mathrm{k}), \quad(\mathrm{k}=0,1,2, \cdots) \tag{9}
\end{equation*}
$$

If,we use state variable $x=[\underline{\theta}, \underline{\dot{\theta}}]^{T}$ and output $\mathrm{y}=[\underline{\mathrm{S}}, \underline{\mathrm{N}},]^{\text {r }}$, conventiona1 state equation and output equation are

$$
\begin{align*}
& \dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{bu} \\
& y=C x \\
& \text { w. se } \tag{10}
\end{align*}
$$

Using transition matrix $\Phi(t)$, we can get the following discrete systems:

FIGURE 1 : Coordinate Syster

$$
\begin{align*}
& {[\underline{\mathrm{S}}(\mathrm{k}+1), \underline{\mathrm{N}}(\mathrm{k}+1)]^{\mathrm{T}}=\Phi(\mathrm{T})[\underline{\mathrm{S}}(\mathrm{k}), \underline{\mathrm{N}}(\mathrm{k})]^{\mathrm{T}}} \\
& +\int_{0}^{\mathrm{T}}\left[-\mathrm{j} \phi \phi_{12}(\eta), \phi_{22}(\eta) / \mathrm{H}\right]^{\mathrm{T}} \mathrm{~d} \eta \underline{\mathrm{U}}(\mathrm{k}) \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { where } \Phi(\mathrm{t})=\left\lceil\phi_{11}(\mathrm{t}), \phi_{12}(\mathrm{t})\right\rceil \\
& \left\lfloor\phi_{21}(\mathrm{t}), \phi_{22}(\mathrm{t})\right\rfloor \tag{12}\\
& \begin{aligned}
\phi_{11}(t) & =\left\{\left(\lambda_{n}-h\right) \exp \left[j \lambda_{n} t\right]\right. \\
& \left.+\left(h-\lambda_{p}\right) \exp \left[j \lambda_{p} t\right]\right\} /\left(\lambda_{n}-\lambda p\right) \\
\phi_{12}(t) & =j\left\langle-\exp \left[j \lambda_{n} t\right]\right. \\
& +\exp [j \lambda p t]\} /\left(\lambda_{n}-\lambda p\right) \\
\phi_{21}(t) & =k \phi \phi_{12}(t) \\
\phi_{22}(t) & =\left\{\lambda_{n} \exp \left[j \lambda_{n} t\right]\right. \\
& \left.-\lambda_{p} \exp \left[j \lambda_{p} t\right]\right\} /\left(\lambda_{n}-\lambda p\right)
\end{aligned} \tag{13}
\end{align*}
$$

$j \lambda_{\mathrm{n}}, \mathrm{j} \lambda \mathrm{p}=\mathrm{eigen}$ value of Eq. (10)

$$
\begin{equation*}
=j\left[h \pm \sqrt{ }\left(h^{2}-4 k\right)\right] / 2 \tag{15}
\end{equation*}
$$

The second or integration term of right-hand side of Eq.(11) expressed by

$$
\begin{equation*}
\mathrm{q}(\mathrm{~T}) \underline{\mathrm{U}}(\mathrm{k})=\left[\mathrm{q}_{1}(\mathrm{~T}), \mathrm{q}_{2}(\mathrm{~T})\right]^{\mathrm{T}} \underline{\mathrm{U}}(\mathrm{k}) \tag{17}
\end{equation*}
$$

becomes after integrarion as follows:

$$
\begin{gather*}
\mathrm{q}_{1}(\mathrm{~T})=\mathrm{j}\left[\left\{\left(1-\exp \left[\lambda_{\mathrm{p}} \mathrm{~T}\right]\right) / \lambda_{\mathrm{p}}\right\}\right. \\
\left.-\left\{\left(1-\exp \left[\lambda_{\mathrm{n}} \mathrm{~T}\right]\right) / \lambda_{\mathrm{n}} \mathrm{~T}\right\rangle\right] /\left(\lambda_{\mathrm{n}}-\lambda_{p}\right) \tag{18}\\
\mathrm{q}_{2}(\mathrm{~T})=\mathrm{j}\left\langle\exp \left[\lambda_{\mathrm{p}} \mathrm{~T}\right]-\exp \left[\lambda_{\mathrm{n}} \mathrm{~T}\right]\right\} \\
/\left\{\left(\lambda_{\mathrm{n}}-\lambda_{\mathrm{p}}\right) \mathrm{H}\right\rangle \tag{19}
\end{gather*}
$$

1．HRE MOTION AFTER EXCITATION H1\％1010 form of output $y(t)$ is

$$
\begin{equation*}
y(\mathrm{k}, \mathrm{l})=(\mathrm{T})(\mathrm{T}) y(\mathrm{k})+\mathrm{q} \underline{\mathrm{U}}(\mathrm{k}) \tag{20}
\end{equation*}
$$

limplut $y([k+1] T+t)$ of free motion nllor the end the following one 101 Iangular $\underline{\mathrm{U}}$ ：
$\begin{aligned} \|(k)=\frac{U}{0} & k=1 \\ = & k \geqq 2\end{aligned}$
in now required for determination of ！（！ 11$)$ ．We can get it easily：
$v(1)=(\mathrm{t})[\Phi(\mathrm{T}) \mathrm{y}(\mathrm{k})+\mathrm{qU}]$
Alいm some manipulations，coefficients ． 1 唋｜j $\lambda_{n} t$ ］and $\exp [j \lambda p t]$ of $S(t)$ in （1），Sn and Sp，respectively，are given an 10 Tlows：

$$
\begin{align*}
& \therefore n=\left[\lambda p \underline{S}(\mathrm{k})+\mathrm{hN}(\mathrm{k})+\mathrm{j}\left(\underline{U} / \lambda_{\mathrm{n}}\right)(1-\right. \\
& \left.\exp \left[j \lambda_{n} T\right] \overline{)}\right] /\left(\lambda_{n}-\bar{\lambda} p\right) \tag{23}\\
& \therefore\left[\lambda_{n} \underline{S}(k)+h N(k)+j(\underline{U} / \lambda p)(1-\right. \\
& \operatorname{ex\overline {p}}[j \lambda p T \overline{]})] /\left(\lambda_{n} \overline{-} \lambda p\right) \tag{24}
\end{align*}
$$

liplations（23）and（24）express आぃilitudes of each mode after axitation of one rectangular torque 1）．Therefore，\underline{U} must be determined so （1）． 10 decrease both $\underline{S n}$ and Sp．

4．DE：TERMINATION OF U
Lquations（23）and ${ }^{-}$（24）are similar lorms each other and expressed as

$$
\begin{equation*}
\therefore \mathrm{C}=\mathrm{Ac}\langle\underline{\mathrm{Bc}}+\mathrm{j} \underline{\mathrm{U}} \mathrm{Kc}(1-\exp [\mathrm{j} \lambda \mathrm{cT}])\} \tag{25}
\end{equation*}
$$

whore Ac, Bc and Kc are constants meluding initial values，and $c=n$ or p ． In Eq．（25），the second term inside of （）is a chord of a circle whose radius i：：UKc as shown in Fig．2．This chord， U1，has an advanced angle，$\lambda \mathrm{cT} / 2$ ，to U ． Tin make $\underline{S c}$ small，direction of \bar{U} Hould coincide with direction of $-B C$ ， 1．e．directon of \underline{U} should be behind to $B C$ by $\lambda c T / 2$ ．
（hord length $U_{c}=|\underline{U c}|$ is an effective

FIGURE 2 ：Explanation of Eq．（25）
magnitude of \underline{U} which depends on sampling period \bar{T} ．
Note that
if T coincide with mode period，
Uc becomes zero，and the mode is
uncontrollable．
If T is near to the mode period，Uc becomes small．
Rearranging Eq．（25），an important formula is derived：

$$
\begin{equation*}
\mathrm{Bc}+\mathrm{Kc} \underline{\mathrm{U}} 2 \sin [\lambda \cdot \mathrm{cT} / 2] \exp [j \lambda \cdot \mathrm{cT} / 2]=0 \tag{26}
\end{equation*}
$$

From Eq．（26），we can get a feedback torque $\mathrm{Kc} \underline{U}$ which completely vanish the mode：

$$
\begin{equation*}
\mathrm{Kc} \underline{U}=-\underline{B c e x p}[-j \lambda \cdot \mathrm{cT} / 2] /(2 \sin [\lambda \cdot \mathrm{cT} / 2]) \tag{27}
\end{equation*}
$$

where $K c$ is feedback gain．
Unfortunately，it is rare that KpU and KnU coincide each other．Therefore， Eq．（27）should be used for determination of direction only．One ha1f magnitude of Eq．（27）may be one good standard．

5. SIMULATION EXAMPLES

A simulated model is
$\omega=2000[\mathrm{rad} / \mathrm{s}]=19,108[\mathrm{rpm}]$, angular velocity, and eigen values are: $\lambda p=88.2[\mathrm{rad} / \mathrm{s}]($ period $\mathrm{Tp}=71[\mathrm{~ms}])$, $\lambda_{\mathrm{n}}=918[\mathrm{rad} / \mathrm{s}]($ period $\mathrm{Tn}=6.84[\mathrm{~ms}])$, σ (moment of inertia ratio) $=0.5$.
In the following, although several T is used, gain Kn and Kp are equal and set to a fixed values determined at sma11 T. Sometimes $K p=0$ is tried to see effects of Kn on P-mode. Only loci of \underline{S} and \underline{H} will be shown. Simulation time is 62 [ms] if no notes.
At first, the case of contro1 $\underline{U}=0$ with two different initial conditions are shown in Fig.3, where no convergence or divergence is observed, showing correct numerical integration.
Figure 4 is three cases of $T<T n$. The longer T,the 1 arger effects on P -mode are seen. Especially, in $T=0.9 \mathrm{Tn}$ case, locus of H becomes distorted spiral.
Figure 5 is two cases of $\mathrm{T}=1.81 \mathrm{Tn}$, whose initial conditions are the same as Fig.3. Damping becomes worse compared to the last case of Fig. 4 .
Figure 6 is a case of $T=2.27 \mathrm{Tn}$, where initially P -mode diverges a little as N -mode decays relatively quickly. About 200 ms after, P-mode begins to converge slowly, as shown in the lower part.

6. DISCUSSION

If, $\mathrm{T} \ll \mathrm{Tn}$, it seems possible to suppress either mode separately. If,we move total \underline{H} towards \underline{S}, then \underline{H} moves outside, ${ }^{-}$leading to P -mode divergence. Therefore, mode separation control was very effoctive, at least $T \ll T n$.
In this paper, maximum T in presented simulation example is $15.5[\mathrm{~ms}]=2.27 \mathrm{Tn}$. The author has tried $31.1[\mathrm{~ms}]=4.54 \mathrm{Tn}$. The result was success. However, initial response was divergence of mode just as Fig.6, and it requised long time that by far week convergece began.
Therefore, $T>2 T n$ is theoretically possible, but not practical.
Another possibility is, for example in case of $2 \mathrm{Tn}\langle\mathrm{T}<3 \mathrm{Tn}, \underline{\mathrm{U}}=0$ for $\mathrm{t}\langle 2 \mathrm{~T}$, control begin at $t=2 \mathrm{Tn}$. One cycle of \underline{U} in Fig. 2 is useless for N -mode, moreover may be harmful for P-mode. It would be worthwhile researching this problem.

7. Concluding Remarks

Using transition matrix with complex number variables, analytical solution for mode separation control was given. Usefullness of optimal direction of control torque based on the analytical solution were proved using many simulation examples.

FIGURE 5 : Case of $T=1.81 \times \mathrm{Tn}$ with Two Different Initial Conditions

FIGURE $6: T=2.27 \times$ Tn Case

