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AII:;TRACT 
III this paper,digital control of 
I' ;( \' lusively two conical modes of rigid 
" pi nning rotor is treated. If,sampling 
pl' nod T > Tn where Tn is nutation or 
1111', h speed mode (N- mode) period,it is 
dpparent that suppression of that mode 
I," comes difficul t. 
I:ontrol strategy is to move low speed 
Ili ode (P-mode) component of angular 
IIIIl lllentum vector H of the rotor towards 
I (' ntral axis position for P-mode 
:; lI ppression,and N-mode component of H 
l owards the spinning axi s for N-mode 
:; ll ppreSSl0n. In case of T>Tn,more 
:; () phiscated control law is required. A 
"(' tailed analysis is gIven. Several 
:; i rnulation examples including the 
('a ses of T>Tn are gIven showing 
rffectiveness of proposed control law. 

I. I NTRODUCTON 
Digi tal signal processors (DSPs) are 
more and more advancing and becoming 
cheeper. However,to make sampling 
period including, for example, observer 
computation small IS one of remained 
difficult problems. If ,an advanced 
:'oftware which can suppress two 
conical modes even In case of T>Tn 
a ppeared,many analog control circuits 
will be replaced by DSPs. 
Another problem in digital control IS 
the fact that negative restoring or 

spring constants to deviation of the 
rotor which IS generated by bias 
magnetic flux for linearization,is 
unavoidable. 
However,cylindrical or translational 
motion IS rather simple and has no 
resonance In case of nega t i ve spring 
constants. Therefore,translational 
motion is not treated in this paper. 
At first,discrete systems with zero
order-hold of a controlled model IS 
gi ven using complex number variables 
on the assumption that tilting angle 
of the rotor e and it's rate signal 
e are available. Then,solution of two 
free modes after the end of control 
torque U are given. The solution IS 
used for finding optimal directions of 
U for suppression of each mode. 

2. CONTROLLED MODEL 
Direction of momentum vector, H, of an 
axi-symmetric rotor viewed from Z-axis 
of inertia coordinate,X-Y-Z, is easily 
obtained from tilting angle, e , of the 
rotor axis vector S and it's rate 
signal, e which are supposed to be 
available for control. Direction 
angles of the two vectors, Sand H, 
from Z-axis are small and can be 
descri bed by complex numbers Sand H 
on a complex number plane (see Fig. 1~ 
underlined letters mean complex 
numbers), or, they are expressed as 
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S=Sx+ jSy= () y- j () x=- j f) 

E=~+Id (t9 x + j t9 y) / I H 1-
( 1 ) 
(2) 

where f) x and f) yare tilting angle of 
S about X-and Y-axis, respecti vely, j 
IS complex number unit and Id IS 

radial moment of inertia of the rotor. 
Using 

t9=t9 x+jt9y 
h=1 HI /Id=Ipu) /Id=a u) 
a =Ip/Id 

(3) 
(4) 
(5) 

where Ip is polar moment of inertia, 
and u) is rotation veloci ty of the 
rotor,nutation angle N IS expressed as 

(6) . 

Using these notations and control 
torque as shown 

~(kT)=Ux(kT)+jUy(kT) (7) 

equation of motion is expressed as 

Id ii - jH Ji.. -K..[ =~ (kT) , (k=O, 1 ,2, ... ) 
(8) 

where K is unstable spring constant 
due to bias flux. 
Dividing Eq. (8) by Id,omitting T,and 
using small letters:e.g.H/ID~h, we get 

(k=O, 1 ,2, ... ) 
(9) 

If ,we use state variable x= Uz.. ,Ji..] r 

and output y=[S,N,]r,conventional 
state equation and ~utput equation are 

X =Ax+bu 
y=Cx 

w~ 're 
A=iO, 1 I 

lk,jhJ, 
b= ·Ol 

1 J , 
C=f - i, 0 l 

l_ 0, 1 /h J (10) 

Using transition matrix (D (t) ,we can 
get the following discrete systems: 

-z 

S : Spinning axis 

H : AnglIlar momentum 

vector 

FIGURE 1 Coordinate System 

[S(k+1) ,N(k+1)]I=<J) (T) [S(k) ,N(k)] 1 

+ J' 0 1 [- f¢ I 2 (77 ) , ¢ ?:! ( 77) / H] T d 7} ~ (k) 
( 1 1 ) 

where <D (t)=! ¢ I I (t), ¢ 12 (t)l 
1¢:!,(t)'¢2:!(t)J (12) 

¢ II (t)={(?tn-h)exp[j?tnt] 
+ (h-?tp) exp [j?tp t] > / (?tn -?tp) (13) 

¢ I :! (t) = j{ -exp [j?tn t] 
+exp [j?tp t] > / (?tn -?tp) (14) 

1> 2 t (t) =k ¢ I 2 (t) 
¢ 2 (t)=(?tnexp[j?tnt] 

-?tpexp [j?tp tD/(?tn-?tp) (15) 
j?tn , J?tp=eigen value of Eq. (10) 

=j[h±v'(h~-4k)]/2 (16) 

The second or integration term of 
right-hand side of Eq.(ll) expressed 
by 

q(T)U(k)=[q, (T) ,Q2 (T)]IU(k) (17) 

becomes after integrarion as follows: 

q I (T) = j [ {( 1-exp [?tp T] ) /?tp } 
- {( 1-exp [?tn T] ) /?tn T} ] / (?tn -?tp) ( 18) 

q2 (T) = j < exp [?tp T] -exp [?tn T] > 
/{(?tn-?tp)H) (19) 
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"IIEE MOTION AFTER EXCITATION 
II. ,1 , ' 1, ' form of output y(t) 1S 

( I I I ) (I) (T)y(k)+qQ(k) (20) 

!l1l1 11l' 1 y ([k+1]T+t) of free motion 
u ill" the end the following one 
•• I I rl lI},,1l 1ar U 

1/ ( I J U k = l 
() k ~:' 2 (21 ) 

11,1\4 required for determination of 

l( i , I). We can get it easily: 

( t) (/) (t)[cD (T)y(k)+qQ] (22) 

I, ' " :;ome manipulations,coefficients 
, ., '· X II Ijitn t] and exp [jitp t] of ~ (t) in 

( I) , :: '1 and Sp,respectively,are given 
" 11,1 l ows: 

." .. litp S (k) +hN (k) + j (U!i1.n) (1-
exp [jitn T])] / (An -Ip) (23) 

' II I itn ~ (k) +h,!'! (k) + j(Q!i1.P ) (1-
exp[jitpT])]f(itn-itp) (24) 

I 'i 11.1 1 tOns (23) and (24) express 
11111' I j tudes of each mode after 

" " tation of one rectangular torque 
II Tlw refore,Q must be determined so 
I II· I () decrease both Sn and Sp. 

'" DETERMINATION OF U 
1'1"111 i ons (23) and (24) are simi lar 
I " ' III :; each other and expressed as 

:; , . ." Ac {Bc+ jQKc (l-exp [ji1.:cT] » (25) 

I-I llI're Ac,Bc and Kc are constants 
IIlll uding initial values,and c=n or p. 
111 Eq. (25) ,the second term inside of 
() i s a chord of a circle whose radius 
, :; UK c as shown in Fig.2. This chord, 
Ilr, has an advanced angle,i1.:cT/2,to Q. 
'('.. make Sc small, direct ion of Uc 
,.llIlul d coincide wi th direction of -Bc, 
, . ,.. directon of U should be behind to 
IIr' by i1.:cT/2. 

(:~rd length Uc=IUcl 1S an effective 

FIGURE 2 Explanation of Eq. (25) 

magni tude of U wh;.ch depends on 
sampling period T. 
Note that 

if T coincide with mode period, 
Uc becomes zero, and the mode is 
uncontrollable. 

If T is near to the mode period,Uc 
becomes small. 
Rearranging Eq. (25) ,an important 
formula is derived: 

Bc+KcU2sin[i1.:cT/2]exp[jitcT/2]=0 (26) 

From Eq. (26),we can get a feedback 
torque KcU which completely vanish the 
mode: 

KcU=-Bcexp[-ji1.:cT/2]/(2sin[i1.:cT/2]) 
- - (27) 

where Kc is feedback 
Unfortunately,it is 
KnU coincide each 
Eq. (27) should 

ga1n. 
rare that KP!!. and 
other. Therefore, 
be used for 

determination of direction only. One 
half magni tude of Eq. (27) may be one 
good standard. 

9 
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KP=KN=0 

(a)Large P- and Small N-mode (b) Large N- and Small P-mode 
FIGURE 3 : Free Motion with Large P-mode and N-mode 

5. SIMULATION EXAMPLES 
A simulated model is 

w=2000[radjs]=19, 108 [rpm] ,angular 
velocity,and eigen values are: 
Ap=88.2 [radjs] (period Tp=71 [ms]), 
An=918 [radjs] (period Tn=6.84 [ms]) , 
a (moment of inertia ratio)=0.5. 

In the following,although several T is 
used,gain Kn and Kp are equal and set 
to a fixed values determined at small 
T. Sometimes Kp=O is tried to see 
effects of Kn on P-mode. Only loci of 
Sand H will be shown. Simulation time 
is 62 [ms] if no notes. 
At first, the case of control u=o with 
two different initial conditions are 
shown in Fig.3,where no convergence or 
divergence is observed,showing correct 
numerical integration. 
Figure 4 is three cases of T<Tn. The 
longer T,the larger effects on P-mode 
are seen. Especially,in T=0.9Tn case, 
locus of H becomes distorted spiral. 
Figure 5 1 s two cases of T= 1 .81 Tn, 
whose initial conditions are the same 
as Fig.3. Damping becomes worse 
compared to the last case of Fig.4. 
Figure 6 is a case of T=2. 27Tn, where 
initially P-mode diverges a little as 
N-mode decays relatively quickly. 
About 200ms after,P-mode begins to 
converge slowly,as shown in the lower 
part. 

6. DISCUSSION 
If,T«Tn,it seems possible to suppress 
either mode separately. If,we move 
total H towards S,then H moves 
outside:leading to P~mode divergence. 
Therefore,mode separation control was 
very eff"ctive,at least T«Tn. 

. In this paper, maximum T in presented 
sim~lation example is lJ.5[ms]=2.27Tn. 
The author has tried 31.1 [ms]=4.54Tn. 
The resul t was success. However, 
initial response was divergence of ~

mode just as Fig.6, and it requl; ed 
long time that by far week convergece 
began. 
TherGfore, T > 2Tn IS theoretically 
possible,but not practical. 
Another possibility is, for example in 
case of 2Tn<T<3Tn,U=0 for t<2T,control 
begin at t=2Tn. One cycle of U In 
Fig.2 is useless for N-mode, moreover 
may be harmful for P-mode. It would be 
worthwhile researching this problem. 

7. Concluding Remarks 
Using transItIon matrix with complex 
number variables, analytical solution 
for mode separation control was given. 
Usefullness of optimal direction of 
control torque based on the analytical 
solution were proved uSIng many 
simulation examples. 
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fIGURE 4 Simulation of T < Tn Three Cases with Various Control 
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T = 12.4 ems] = 1.81Tn 

T =12.4ms=1.81Tn 

FIGURE 5 : Case of T = 1.Sl X Tn with 
Two Different Initial Conditions 

FIGURE 6 T 2.27 X Tn Case 


