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ABSTRACT 

In this paper two controllers are compared with re­
gard to their performance in a wmputer simulation 
ofloss of mass from a rotor. Both wntrollers are con­
sidered to use a magnetic actuator to apply the wn­
trol forces and operate only on the displacement of 
the rotor at certain measurement locations. The first 
controller is designed using H 00 optimisation. The 
sewnd, called a synchronous feedback controller, is 
a closed-loop version of an open-loop controller used 
for the attenuation of synchronous vibration. The 
synchronous feedback controller can control vibra­
tion under both steady state and transient wndi­
tions. The performance of the synchronous feed­
back wntroller is slightly inferior to the Hex:; con­
troller. However, this is to be offset against the fact 
that the synchronous feedback controller would be 
much simpler to implement than the H 00 controller 
in practical applications. 

NOTATION 

f 
G(s) 
H(s) 
K(D) 
M 
q 
'T' 

s 

force distribution matrices 
system damping matrix 
control state vector 
disturbance force vector 
transfer function matrix 
controller transfer function matrix 
system stiffness matrix 
system mass matrix 
generalised coordinate 
rotor displacement 
Laplace transform variable 
time 
sampling period 
closed-loop transfer function matrix 

u 
W(s) 
y 

w 

D 

A 
A 

control force vector 
weighting function matrix 
measurement state vector 

feedback parameter 
synchronous system matrix 
tolerable rotor deflection 
controller performance measure 
frequency 
running speed frequency 

general synchronous amplitude of a 
general Laplace transform of a 

Subscripts and superscripts are defined in the text. 

1 INTRODUCTION 

The problem of attenuation of vibration in rotor­
bearing systems is well established. The majority of 
work on the problem deals with steady synchronous 
vibration caused by unbalance of the rotor. Another 
aspect of the problem is the control of transient vi­
bration that occurs after a component failure, such 
as blade loss in a turbine. The attenuation of such 
transient vibration is important because it allows 
the rotor-bearing system to be shut down without 
further damage. 

There has been much interest in the attenua­
tion of rotor-bearing vibration using forces gener­
ateel by magnetic actuators. Both open and closeel­
loop strategies have been used for the control of syn­
chronous vibration. In such a case the advantage of 
an open-loop strategy is that it can optimise perfor­
mance without incurring instability problems. How­
ever, for transient vibration attenuation, a closed­
loop controller must be used. Relatively little work 
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FIGURE 1 Rotor dimensions and discretisation for the finite-element model. 

has been done on the attenuation of such vibration. 
Palazzolo et al. [1] have used piezoelectric actua­
tors with feedback of position and velocity. Viggiano 
and Schweitzer [2] investigated the use of both de­
centralised and centralised controllers in the atten­
uation of transient vibration of a rigid rotor. 

In this paper two controllers are designed for the 
attenuation of vibration in a rotor-bearing system 
under a mass loss situation. The system consists 
of a flexible rotor supported by two oil-lubricated 
journal bearings. The first controller is designed us­
ing If CXJ optimisation. The second is called a syn­
chronous feedback controller as it is a closed-loop 
version of an open-loop synchronous vibration al­
gorithm [3, 4]. The advantage of the synchronous 
feedback controller is that it can attenuate vibration 
under both steady and transient conditions. The 
controller was first introduced by Berry et al. [5]. 
Here it is shown that, with a relatively small in­
crease in the complexity of the control law used in 
[5], enhanced performance can be achieved. 

2 MODEL OF ROTOR-BEARING 
SYSTEM 

The rotor-bearing system considered here is an ex­
perimental rig which has been described in detail in 
[4, 6]. The rotor is a steel shaft with end mounted 
rigid discs. The dimensions of the rotor are shown in 
figure 1. The static weight of the rotor is supported 
by two oil-lubricated journal bearings. A magnetic 
actuator can apply control forces in both horizon­
tal (x) and vertical (y) directions. The vibration of 
the rotor is considered measured with horizontal and 
vertical position transducers at both of the discs and 
at the magnetic actuator location (nodes 1,4 and 9). 

The shaft of the rotor is modelled using finite­
elements based on Timoshenko beam theory [7]. 

The journal bearings are modelled using linear short 
bearing theory [8] and exhibit asymmetric dynamic 
characteristics. The laminations of the magnetic ac­
tuator that are attached to the shaft are modelled as 
a 15 kg annulus with an outer diameter of 180 mm. 
The magnetic actuator incorporates a current am­
plifier and, hence, its dynamic properties can be ig­
nored. When these models are combined an equa­
tion of motion can be derived in the form 

Mq + C(n)q + K(fl)q = Ed + Buu (1) 

where q is the vector of generalised coordinates, f 
is the vector of disturbance forces, u is the vector of 
control forces from the magnetic actuator, and n is 
the running speed. Eight finite-elements (figure 1) 
are used in the model of the shaft in order to predict 
the first and second flexure modes with errors less 
than 6%. The vector q = [ql T, Q2T, ... , qgTf, where 
each qi (i = 1,2, ... ,9) is the vector of generalised 
coordinates at the ith node. Each qi is defined by 
Qi = [qli' q2i' q3" q4,F' where ql, and q2, are the dis­
placements along the x and y axes, and q3, and Q4, 
are the rotations about the x and y axes respectively. 

There are four imaginary part eigenvalue inter­
sections with the running speed in the range O~ 
400 rads~l at 229, 258, 27.5 and 317 rads~l. The 
first two modes at 229 and 2.58 rad S~l are highly 
damped, as can be seen from figure 2. The lightly 
damped modes at 275 and 317 rad s~l correspond to 
the first fiexural mode of the rotor where splitting 
has been caused by the asymmetric characteristics 
of the journal bearings. 

3 TRANSIENT PERFORMANCE 

In order to specify the performance that is required 
in the loss of mass situation, a measure of the vibra­
tion of the rotor is needed. At each node, in response 
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FIGURE 2 Major (solid) and minor (dashed) axes 
of the synchronous elliptical orbit at the magnetic 
actuator position in response to an unbalance of 
0·01 kg on the edge of the non-driven disc. 

to a disturbance f occurring at t = 0, the displace­
ment of the centre of rotation of the rotor from its 
equilibrium position is given by 

A natural measure of the vibration of the rotor at 
each node in response to a disturbance f is 

II T'i(f) 1100 = sup{lr'i(t, f)1 : t ~ O} (3) 

This is the maximum displacement at the ith node 
of the centre of rotor rotation. The disturbance f 
is the unbalance force caused by a loss of mass. A 
particular example of the disturbance is considered 
to be f* caused by a loss of mass of 0·01 kg from 
the edge of the non-driven disc at time t = O. The 
required performance can be defined by the set of 
ineq uali ties 

{II T'i(f*) 1100 ::; Ci, i = 1,2, ... , 9} (4) 

where each margin Ci is the largest tolerable value 
of rotor deflection. Here the margins are all chosen 
as Ci = 0·1 mm (i = 1,2, ... ,9) as this corresponds 
to 10% of the air gap in the magnetic actuator. The 
performance of the two controllers designed in this 
paper can be compared on the basis of the measure 
of performance 

¢Y = max {II T'i(f*) lleo : i = 1,2, ... , 9} (5) 

i.e. the maximum vibration over all the nodes. 
Here, for simplicity, it is required only to satisfy 

(4) at a single critical speed n = 322 rads- 1 , which 

corresponds to the largest synchronous vibration fre­
quency in the uncontrolled case (see figure 2). Tn 
general (4) could be extended to consider a range of 
running speeds n, and also a set of disturbances f 
instead of the particular one f* . 

The required performance (4) is consistent with 
the principle of matching [9, 10, 11]. The main ob­
jective of the principle of matching is to ensure that 
the set P of possible inputs is a subset of the set T 
of tolerable inputs (i.e. P ~ T). In this case, the 
tolerable set T contains the disturbances f that sat­
isfy the set of inequalities (4), and the possible set 
P contains only a single disturbance f* . 

4 RX) CONTROLLER 

One method of attempting to satisfy the set of in­
equalities (4) would be to use a closed-loop controller 
H and solve the minimisation problem of finding ¢Y* 
such that 

¢Y* = min¢Y 
H 

(6) 

A minimisation problem is needed that can be solved 
using the Heo optimisation method to yield a value 
of ¢Y close to ¢Y*. The definition of the H 00 norm of 
the transfer matrix G( s) is 

IIGlloo = sup {iT (G(jw)) :w EIR} (7) 

where a-(G(jw)) is the maximum singular value of 
the matrix G(jw). Using equation (1), it is possi­
ble to derive the open-loop relation in the Laplace 
transform domain as 

(8) 

~ ~ 

where E is a vector of control states and Y is a vec-
tor of measurement states. The partitioned transfer 
matrix G(s) is also speed dependent. The controller 
is derived from the measurement states as 

~ ~ 

U = llY (9) 

and enables the closed-loop system to be expressed 
in the form 

E = TejF (10) 

In the present paper, the minimisation problem con­
sidered is 

(11 ) 

where W is a diagonal transfer matrix weighting. 
The control states E are chosen to contain the x 

~ ~ 

and y velocities, sQ] i and SQ2i' respectively, at all 
the nine nodes (figure 1). The velocities were chosen 
in preference to the displacements in the controller 
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design since they are more sensitive to changes in 
unbalance. 

The weighting function matrix W(s) (see figure 3) 
was chosen to approximate unbalance forces with 
very slowly decaying sinusoids (the decay is needed 
to ensure that the weight W is stable). The min- S 
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FIGURE 3 Maximum and minimum singular val­
ues of the weight W. 

imisation problem was solved using MATLAB soft­
ware [12]. Figure 4 shows the uncontrolled and con­
trolled rotor response r 4 (1*) at the actuator posi­
tion. The value of ,p = 0·06 mm implies that the 
required performance, as defined by (4), has been 
achieved. The corresponding controller is a con­
stant coefficient state-space model of order 84. The 
high order together with the short sampling period 
needed for implementation in digital from would ne­
cessitate the use of powerful and expensive digital 
signal processors. In practice, some form of model 
reduction in the design would reduce the controller 
order, but the present example is suitable for simu­
lation and comparison purposes. 

5 SYNCHRONOUS 
CONTROLLER 

FEEDBACK 

The synchronous feedback controller is a closed-loop 
version of a synchronous open-loop controller [3, 4] 
and was introduced by Berry et al. [5]. An enhanced 
design is considered in this paper. In order to reduce 
steady synchronous vibration at a running speed D 
the open-loop control force is of the form 

(12) 

where the complex amplitude U is to be selected. 
The steady state response of q to a control force 

.§, 

Time [s] 

FIG URE 4 Uncontrolled (dashed) and Hoc con­
trolled (solid) responses 1"4(1*), where 1* is the un­
balance force due to a loss of mass of 0·01 kg from 
the edge of the non-driven disc. The margin t:4 is 
shown as a clash-dotted line. 

(12) is 
(13) 

where 

Defining Q::' to contain the elements of Qu corre­
sponding to the measurement locations, implies that 

Q::' = ~(D)U (15) 

where ~(D) contains the appropriate rows of 
(_D2M +jDC+K)-lBu . 

The steady state response at the defined measure­
ment locations to a control force (12) and an unbal­
ance force f is 

qm (t) = Re {(~(D)U + Qj' )e jOt } (16) 

where Qj' is the synchronous amplitude due to the 
unbalance. 

The open-loop control force is obtained by solving 

(17) 

where II ·112 is the Euclidean norm. This choice min­
imises the amplitude of qm in a least squares sense. 
The solution of (17) is given by 

(18) 

where ~t = (~T ~)-1 ~T is the pseudo-inverse of~. 
In [5] the controller defined by (12) and (18) was 

converted into a feedback controller that operates 
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on a synchronous cycle-by-cycle basis. The control 
force generated is of the form 

t E [(k -1)T,kT) 

k = 1,2,... (19) 

where T = 27f-;n. The amplitude Uk is defined by 

(20) 

where Qk is the synchronous amplitude for the kth 
period, which can be evaluated digitally using fast 
Fourier transform techniques, and f3 is a real num­
ber. 

The recursion relation (20) can be re-written in 
the form 

k 

Uk+l = -f3~t LQi 
i=1 

(21) 

The summation in (21) allows the controller defined 
by (19) and (20) to be interpreted as a form of in­
tegral control acting on the synchronous amplitude 
Qk. In an attempt to imitate a generalised form of 
proportional+integral+derivative control the recur­
sion (20) is extended to 

Uk+l = [h - f3p~t (Qk - Qk-I) - f31~tQk 

-f3D~t (Qk - 2Qk-l + Qk-2) (22) 

or, equivalently, 

k 

-f3P~tQk BI~t LQi 

where (3p, (31 and f3D are parameters to be selected. 
The form of the required performance (4) is in 

accordance with the method of inequalities [13, 14, 
pp. 341-345] which requires that a design problem 
be stated as a set of inequalities in the form 

{ 1>i (p) :::; Ei, i = 1, 2, ... , n} (24) 

where p is a parameter to be selected from a given set 
P, the ¢j are real functions of p, and Ej is the largest 
tolerable or permissible value of 1>i(p). Any parame­
ter p that satisfies (24) is a solution to the problem. 
Another aspect of the method of inequalities is the 
recognition that numerical search methods may, in 
general, be used to find solutions to a set of inequal­
ities (24). One such numerical search method is the 
moving boundaries process [13, 14, pp. 344-345]. 

An implementation of the moving boundaries pro­
cess in MATLAB was used to find solutions to the set 
of inequalities (4). Initially the synchronous feed­
back controller was defined by (19) and (22) with 

the parameters f3p, f31 and f3D real numbers, im­
plying that the parameter p = (f3p, f31, f3D f E ffi3. 
An extensive search was unable to find a solution 
to (4). In order to allow for the asymmetric dy­
namic characteristics of the journal bearings, it was 
decided to provide independent proportional, in­
tegral and deri vati ve parameters for the horizon­
tal and vertical directions by making f3p, f31 and 
(3D diagonal matrices (f3p = diag(f3p" f3P2)' (31 = 
diag(f3I" (312)' f3D = diag(f3D " (3DJ). Now the pa­
rameter p = (f3P"f3P2,f3I"f3I"BD, ,(3D2)T E ffi6. 
In only a few iterations a solution p = (2·55 x 
10-3 ,0.305,-0.401,-3.02 x 10- 2 , 0·38, 0·:359f was 
found. The corresponding value of 1> = 0·08 mm. 
The uncontrolled and controlled responses r 4 (f*) are 
shown in figure 5. 

Time [sJ 

FIGURE 5 Uncontrolled (dashed) and syn­
chronous feedback controlled (solid) responses 
r4(f*), where J* is the unbalance force due to a loss 
of mass of 0·01 kg from the edge of the non-driven 
disc. The margin E4 is shown as a dash-dotted line. 

6 CONCLUSIONS 

This paper has compared the performance of 
two controllers in a simulated loss of mass from 
a rotor-bearing system. One controller was 
based on Hoo optimisation and the other was di­
rected towards the control of synchronous vibra­
tion components in a generalised form of prop or­
tional+integral+derivative feedback. Both con­
trollers were capable of attenuating steady and tran­
sient rotor vibration. The performance of the syn­
chronous feedback controller was slightly inferior to 
the H 00 controller although both were within toler­
able bounds set on the rotor vibration amplitudes. 
The results demonstrated the potential of either con-
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troller for use with flexible rotor systems. The disad­
vantage of the H 00 controller is the high order and 
for practical implementations this may be a prob­
lem. However, it is recognised that model reduc­
tion techniques could be used to overcome this. The 
synchronous feedback controller utilised the syn­
chronous components in the vibration and was al­
ways of low order. 
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