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ABSTRACT 
This paper describes the design procedure of the 
optimal active magnetic bearing control for a rigid 
gyroscopic rotor from the position of inverse problems 
of dynamics. The procedure is based on the analytical 
solution of the four-dimensional Linear-Quadratic 
optimization problem and results in the coupled speed
dependent optimal control. The simulation results are 
compared with those obtained for a conventional PID 
control. 

INTRODUCTION 
The conventional approach to the optimal Active 
Magnetic Bearing (AMB) control may be formulated 
in the following way. Given the control forces (and/or 
the coil currents and voltages) as functions of the state 
variables, one should determine the control law by 
finding such a system motion trajectory on which an 
extreme value of the performance index takes place. 
From this point of view such AMB control methods as 
the "classical" root locus and state space and, as well as 
the "modem" Roo [1], Q-factorisation [2], sliding mode 
[3] and the others may be considered as methods based 
on the solution of direct problems of dynamics (i.e. to 
find the motion trajectory if the forces are known). 
On the other hand, the optimal AMB control may 
rightfully be formulated as the problem of finding the 
control forces, currents and voltages which provide the 
desirable motion trajectory or the programmed 
trajectory for the AMB system. The programmed 
trajectory may be given by both the explicit function of 
time or the set of differential equations having the 
solution coinciding with the desirable trajectory [4]. 

Methodologically, the control forces, currents and 
voltages may be found by solving the inverse problem 
of dynamics (i.e. to find the forces if the motion 
trajectory is known). Such approach is known to be 
used in robot arm and flight control and leads to simple 
and effective control algorithms. 
In this paper, the inverse problem of dynamics method 
is applied to the radial AMB control system for a rigid 
gyroscopic rotor. Attention is focused on the 
methodology for synthesis of the fourth (fuH)-order and 
second-order optimal linear controllers ensuring the 
minimization of the AMB force reactions. In order to 
minimize forces the Linear-Quadratic optimization 
theory is applied. This theory is known to be based on 
the solution to the nonlinear Riccati equation. Until 
now, only numerical iterative methods are used in such 
problems. But the problem under consideration is 
actually unique because the analytical solution to the 
Riccati equation exists and it has been obtained in [5]. 
The inverse problem of dynamics method leads to the 
coupled speed-dependent optimal control law. 
The controllers obtained are compared with a 
conventional PID controller for the flywheel energy 
storage system by numerical simulation. 

MODELLING 
Modelling of Rotor 
As shown in Fig.I, a rigid gyroscopic rotor of mass M, 
equatorial 11 and axial 13 principal moments of inertia 
spins at the constant rotational speed ill in two radial 
active magnetic bearings AMBI and AMB2.The rotor 
displacement sensors Sl and S2 are not collocated with 
the AMB actuators, i.e. ZI,cZI * and z2,cz2 *. 
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4- "ywheel 

FIGURE 1: Schematic of a rotor 

We introduce the vector 1'/=(xc'Yc,qJx.qJyl of the coor

dinates Xc and y c of the center of mass C and the angles 
of rotation qJx and qJy around X and y axes. Then the 
vectors of rotor displacements at the sensor locations 
q=(xl'Yl'x2'Y2)T and at the actuator centers 
q.=(x, *,Y, *,x2 *'Y2 *)T are given by the linear 
transformations 

q=Z1'/, q. = Z.1'/ 

with 4x4 matrices Z and Z •. 
The equations of motion of the rotor are given by 

Mx c = F, ' My c = F2 
1d)x + m13(Py = F3 , 1, iPy -m13(Px = F4 

or in the matrix form 

(1) 

(2) 
(3) 

(4) 

Here 1 and G are, respectively, the inertia and 
gyroscopic matrices, and F is the vector of the 
generalized forces consisting of the magnetic forces 
Fm and the extemalloads Fe = Fe (1'/,17) and the dis
turbance forces Fd = Fd (t), i.e. 
F = Fm + Fe (1'/,17) + Fd (t). The generalized magnetic 
forces Fm are related to the actuator reacting forces 
P=(P"P2,P3,P4)T by 

(5) 

The equations of motion of the rotor in terms of 
coordinates q may be written in the form 

(6) 

1- Y 
AMB2 I 

FIGURE 2: Schematic of AMB actuators 

Modelling of AMB actuators 
As shown in Fig.2, the AMB actuators incorporate 
eight electromagnets with the coil currents ik , input 
voltages Uk' resistances rk and self and mutual 
inductances Lks , k,s=1, ... ,8. To obtain the linear model 
we represent the currents and voltages by the sums 
ik (t) = ike +ikv (t), uk (t) = Uke +Ukv (t), where 
ike and uke are the bias values, and ikv (t) and u kv (t) 
are the control variables. 
Introducing the vectors of the difference control 
currents 1=(l,,/2,!y/4l and voltages 
U=(U"U2,Uy U4l with elements I, = i,v -isv ' 

U,=u'v-usv' 12=i2v-i6v"'" U 4 =U4v -Usv' we 
can write the expression for the control forces 

(7) 

and the dynamic equation for the AMB actuators 

Ll+BEq+RI = U (8) 

where C q, C;, L, BE and R are, respectively, the 4x4 

matrices of negative stiffnesses, current stiffnesses, 
inductances, electromotive forces of motion and 
resistances [6]. 

OPTIMAL AMB CONTROL 
Conceptions of Control 
Decomposing the control system (6)-(8) into the 
mechanical subsystem (6) and the electromagnetic 
subsystem (7)-(8), we shall solve the control problem 
in two steps. We first consider the plant (6) and find 
the optimal programmed control forces P = pO which 

cause the desirable motion of the rotor q (t ) = q ° (t ). 
Next, considering the plant (7)-(8) we determine the 
optimal control currents I = 1° and voltages U = UO 
which generate the optimal forces pO. 
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Applying the conception of the inverse problems of 
dynamics to the plant (6) we assume that the desirable 
trajectory of motion q(t)=q0(t) is known and it 
coincides with the solution to the differential equation 

wherefo is the given vector-function of q, q, a and co 
;lIld where a is the integral variable defined as a = q, 
;lIld Fd°(t) is the vector of the desirable disturbance 
forces. Equation (9) can be readily constructed, for 
example, from common engineering positions by 
introducing the restoring, damping, correcting and 
integral terms which may be both linear and nonlinear 
and, dependent on the rotational speed co. The force 
F/(t) may be introduced to suppress vibrations of the 
rotor. As it will be shown further, the optimization 
approach can be used to construct Eq. (9), as well. 
Substituting the acceleration (j from Eq. (9) into Eq. 
(6) we obtain the programmed forces 

1'0 = W- 1 (fo (q, q, a, w)+ Hq - ZFFe (q, q)+ ZFFdo (t)) = 

= -(Coq+Boq+Doa)+ W-1ZFFJ (t) (10) 

where Co' Bo and Do are, respectively, the 
proportional, derivative and integral feedback gain 
matrices with elements which may be dependent on 
q, q and co. 
From relation (7) we find the programmed currents 

1° =-cj-1((CO +CJq+Boci+ Dos)+Cj-lW-lZFFdO (t) 

(11) 

To reduce the difference &(tJ=JO(t)-I(t) between the 
programmed currents and actual ones to zero we must 
introduce a current tracking system. In accordance with 
the conception of the inverse problems of dynamics we 
are to give the desirable trajectory &(t). There are 
many ways to do it. Let us first consider the following 
trajectory 

(12) 

which is the solution to the differential equation 

where A = diag( Al ' ... , A 4 ) • Substituting the 

derivative i from Eq.(13) into Eq.(8) yields the 
control voltages V = VO. If matrices Co' Bo and Do 

are time- invariant and FJ (t ) == 0, the control law is 

given by 

where Kq = LAC;-l ( Co + Cq ) + LC j- 1 Do, 

Kv = LACj-
1 Bo + LC j-

I (Co +Cq )- BE' K[ = LA-R, 

K(J = LAC;! Do, Ka = LCj-! Bo are, respectively, 
proportional, derivative, current, integral and accel
eration feedback gain matrices. Next, using the 
tracking system 

(15) 

instead of system (13) results in the control law of the 
form (14) without the acceleration feedback. Finally, a 
relay tracking system leads to the time optimal control 
law given by 

(16) 

where {; is the maximum value of V j . 

Full-Order Controller 
The goal is to find the optimal control forces P = po 
for the four-degrees-of-freedom (4-DOF) control 
system (4) which incorporates two I-DOF systems (2) 
and one 2-DOF system (3). For each of these systems 
we write the state equations in the form 

x=Ax+Bf 

y=Cx 
(17) 

where x is the state vector; y is the output variable; f is 
the input variable; A, B and C are the constant 
matrices. 
It is required to find the control f = fO (or F = FO) 
which brings the system (17) from an arbitrary initial 
state to the zero state by minimizing the criterion 

<X) 

J(fT (t)f(t)+pyT (t)y(t))dt (18) 

° 
where p is the positive weighting scalar. This approach 
means to minimize the integrated square forces with 
the constrained integrated square displacements of the 
rotor. 
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The analytical solution of this optimization problem 
has been obtained in [5] and it is given by 

Fjo =-M(CO~xc+2~cooxJ 

F20 =-M(CO~Yc+2~COoYJ 

F30 = -1] (k] fPx +k2(Px +k3fPY) 

F40 = -1] (k] fPy +k2(Py -k3fPx) 

(19) 

where COo = pl/4 is the desirable natural frequency of 

translational motions of the rotor; ~ = J2 /2 is the 
optimal relative damping; kI' k2 and k3 are, respec
tively, the optimal stiffness, damping and radial 
correcting factors of rotational motions of the rotor 
given by 

k] =~ h 4 /16 + fl6 - h 2 /4, k2 =.j2k;, 
k3 = h~kt!2 (20) 

Here h = co 13/1] is the gyroscopic parameter, and 
flo = p1l4 is the desirable natural frequency of rota
tional motions of the non-rotating rotor. From (20) 
follows that as CO ~ 00 the stiffness and damping 
factors kI and k2 approach to zero, and the radial 
correcting factor k3 becomes equal to .Q6. 
The optimal forces po are determined from Eq.(19) 
and (5). Adding the integral control we can easily 
arrive at the full (fourth)-order speed-dependent 
optimal control law (14). The problem is the relatively 
high order of the controller obtained which may limit 
the performance. 

Second-Order Controller 
Let us obtain the reduced-order optimal controller 
without the cross couplings between AMB 1 and 
AMB2. In this case, we have two the 2-DOF control 
systems obtained from Eq.(6) for AMB1 and AMB2, 
respectively. Consider, for example, the control system 
for AMB1 

where 

x] -h]y] = wll l1 
:V] +h]x] = wn P2 

(21) 

hI = coJ3 z] 11] (Z2 -z]), wll =W22 =M-]+z]z~1]-]. 
Applying the procedure (17)-(20) to Eq.(21) yields the 
optimal forces 

. 11° =-wjl(c]x] +b]x]-g]y]) 

P20 =-w2i(c]y] +b]y] +g]x]) 
(22) 

where cI ' bI and gI are, respectively, the optimal 
stiffness, damping and radial correcting factors of the 

AMB1 given by 

c] =~hN16+C06 -hN4, bI=..fk;, 

g] = h] ~ c] /2 (23) 

The optimal forces p30 and p40 can be determined in a 
similar manner. Introducing the integral control we 
obtain two second-order speed-dependent optimal 
control laws (14), one of them is for AMB1 and the 
other for AMB2. 

SIMULATION 
The simulation model shown in Fig.1, is the flywheel 
energy storage system prototype [6]. Table 1 shows the 
main parameters of the system. The simulations are 
done for the closed-loop system having the 4th, 2nd 
and 1st-order optimal PIDA (with the acceleration 
feedback in (14)) and PID (without the acceleration 
feedback in (14)) controllers. The 1st-order PID 
controller is the conventional PID controller. In all the 
cases the Butterworth pole distribution of the radius Vo 

at co=O is used [6]. 

TABLE 1: Specification of the simulation model 

Parameter Sym- Value Unit 
bol 

Mass M 67.2 kg 
Moment of inertia equat. 1] 3.3 kgm2 

axial h 2.12 kgm2 

Location of sensors Z1 -0.1 m 
Z2 0.35 m 

of electromagnets Z1* -0.045 m 
Z2* 0.29 m 

Air gap length (j 0.5 mm 
Coil inductance L 0.1 H 
Coil resistance r 1.5 n 
Bias current ito 0.8 A 
Nominal rotational speed OJn 12000 r.p.m 

Due to the integral control and gyroscopic effect the 
closed-loop system becomes unstable at the bounding 
rotational speed W=OJ*. Fig. 3 shows OJ. as function of 
Yo' The value of OJ. increases with Vo and the controller 
order. For the 4th-order PIDA controller the value of 
OJ. is greater than 40000 r.p.m. 
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FIGURE 3: The bounding rotational speed as a 
function of pole distribution radius. 

Fig. 4 shows the responses of the most loaded AMB I 
on the impulse 1 Ns at the nominal rotational speed 
12000 r.p.m. 
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FIGURE 4: Impulse responses of the 4th order PID 
and PIDA controllers for vo=50 Hz. 

Fig.5 shows the unbalance responses of AMBI on the 
I Ilm eccentricity of the center of mass of the rotor. 
The pole distribution radius Vo is chozen in such a way 
that w*=1.3wn=15600 r.p.m is the same for each 
system. 
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FIGURE 5: The unbalance responses. 

It is easily seen that the multi-order controllers are 
characterizied by significantly smaller control voltages 
than the 1st-order controller (control forces and 
currents are approximately proportional to voltages). 
Table 2 shows the robustness concerning stability with 
parameter deviations. We vary the air gap length D and 
the rotor mass M (together with the moments of inertia 
{I and J3) and find the ratio of the changed values 
8 and M to the nominal values D and M at which the 
system becomes unstable. So, table 2 shows the lower 
and upper values of the parameters at which the system 
is stable. We can see that the multi-order controllers 
have powerful robustness to the parameter variations 
with the exeption of decreasing the air gap length. That 
occurs because of increasing the negative stiffness and 
the relatively small values of va' Robustness becomes 
better with increasing va but the voltages increases, as 
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well. So, it is necessary to find a compromise. 

TABLE 2: Robustness with parameter variations 

Controller Vo (Hz) SI8 MIM 
PID 1st order 110 0.25 - 1.11 0- 1.2 
PID 2nd order 70 0.073 - 1.18 0-1.26 
PID 4th order 65 0.32 - 1.48 0-1.78 
PIDA 1st order 35 0.58 - 1.85 0- 1.97 
PIDA 2nd order 35 0.85 - 3.7 0-5 
PIDA 4th order 20 0.94 - 6.5 0-5 

35 0.59 - 3.1 0-5 

CONCLUSIONS 
The inverse problem of dynamics method is applied to 
AMB control. This method leads to the simple and 
physically clear control algorithms and may be applied 
not only to a linear AMB control but to a nonlinear and 
time-variant control, too. Using the analytical solution 
to the LQ optimization problem results in the multi
order speed-dependent control. Such control, as it is 
seen from the simulations, has a strong robustness for 
parameter deviations and an unbalance cancellation 
effect and it is superior to the conventional PID 
control. 
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