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ABSTRACT 
This paper is described about the research work with 
'.lIl1ulations and experiments concerned with 11 synthesis 
I ()I flexible rotor magnetic bearing system with five-axis
( (1Ilt:01 system of actual test rig. After modelling with 
tile. full order system for the flexible rotor system using 
I illIte element method, we obtained the reduced order 
Iliodel in modal domain. In this case, every flexible 
IllOde in high frequencies was truncated. And we tried to 
design 11 synthesis for the reduced order model like rigid 
101 or. 
A ner choosing the appropriate weighting functions 
depending on frequency, we designed the 11 control 
",ystem using Il-toolbox in MATLAB. We tried the 
,illlulations of control system for the flexible rotor 
lIIagnetic bearing system with five-axis-control system 
amI obtained good performances on simulations. Next, 
we carried out experiments to verify the robustness based 
tlB robust control theory for the actual test rig in cases of 
kvitations and rotations. Comparing the control 
\ystem obtained by the second D-K iteration with the 
, !lntrol system before D-K iteration like benchmark test 
"II same conditions, we confirmed that the 11 control 
" y stem has excellent performances for robust 
pnformances with drastical parameter variations in this 
lesL rig. 

I. INTRODUCTION 
I~()tor is non-contact supported by electromagnetic forces 
III magnetic bearings. Therefore, magnetic bearings are 
Ilsl~d in high speed rotating machinery with many 
; I( I vantages. The advantages of magnetic bearings applied 
to support a rotor system are its con tactless nature, the 
capability of high speed rotation and active vibration 
control. So it is' necessary to use an asymptotic,ally 
stable and robust controller for magnetic bearing to 
support rotor systems. Now the most controllers 

designed have been developed by using PID strategy. 
However, it is not easy to satisfy the robust performance 
of control systems using PID control law. Of course, 
modern control theory for multi-input and multi
output(MIMO) system can be applied to magnetic 
bearing system as advanced control. However, modem 
control theory also cannot treat with uncertainty which is 
induced in a mathematical model to design its control 
system. So, robust control theory is attracted attention 
for control system design of magnetic bearings these 
days. 
At the present time, there are many robust control 
theory. In particular, it is well known that H~ control 
theory[l] and f.l synthesis[2] are very powerful robust 
control theory as linear control, and VSS which is 
variable structure system is also powerful robust 
control[3] as nonlinear control. H~ control theory 
includes the advantages of classical control and modem 
control, and is very systematic as loop shaping theory. 
However, it is called that ~ control applied to actual 
system has not always good performances and sometimes 
very conservative performances. Moreover, it is pointed 
out that control performances go down in parameter 
variations in ~ control system. This is caused by 
maximum singular value. Doyle proposed the structured 
singular value in addition to maximum sigular value to 
improve control performances[4]. This idea is 
established as 11 synthesis theory now[5]. 
11 synthesis can treat with robust performances including 
robust stabilities and nominal performances. Therefore 
it is called that 11 synthesis is an inclusive robust 
control theory, in particular, is very powerful for 
parameter variations. So, it is generally known that 11 
synthesis is superior to H~ control theory. 
Unfortunately, we don't have analytical approach like H~ 
control theory to design the controller of 11 synthesis 
yet. Designing the control system, we have to use the 
numerical approach which is called the D-K iteration. 
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This is the biggest problem for jJ, synthesis. So, if we 
try to design the robust control system using jJ, 

synthesis, nobody knows whether we can get to good 
compensator or not after D-K iterations. It is called that 
it depends on control object, control specification, 
generalized plant and frequency weighting functions. 
In this paper, jJ, synthesis has been applied to the flexible 
rotor-magnetic bearing system to verify a robust 
performance comparing with H~ control. In particular, 
we have obtained excellent data by D-K iteration. 
Namely, it is found that the static stiffness of magnetic 
bearing goes up by the first D-K, the second D-K. 
Though the limit of levitation which means successful 
levitation was 29% of the nominal rotor mass concerning 
parameter variation rate in H~ control, it was 73% in the 
case of jJ, control system. 

2. MODELLING OF FR-MBS 
The dynamics of the flexible-rotor magnetic bearing 
system will be described in this chapter. For simplicity, 
the analysis is only done in the X direction and all the 
coupling effects among the different axes and 
non collocation are ignored. According to the test rig 
which will be described in Chapter 5, the rotor can be 
taken simply into account six parts shown in Fig.1. 

2.1 Flexible Rotor Dynamics 
The discrete model with fourteenth-order is obtained 
using f~ite element method as follows 

Moq+~q=O (1) 
T 

whereq = [4. 81 ~ 82 X:l83 x4 84 Xs 85 ~ 86 x., ~ ] am 
x, 9j (i = 1,.·· ,7) represent displacement and angle of the 

mass on this rotor respectively, especially, ~ an<ixs 
represent the positions where the electromagnets are 
located, Mo is the mass matrix, ~ is the stiffness 

matrix. 

2.2 Actuator Dynamics 
The attractive force due to an electromagnet can be 
generally given by 

P= A B2= A [. N(~+i) ]2 (2) 
Po Po 1 xu+ X 

-+--
jJ, Po 

where P is the attractive force, Po is the permeability in 

the air, A is the air gap area of one pole, B is the 
magnetic flux densities, N is the number of winding 
turns, ~ is the steady-state current, Xu is the steady-state 

gap length, i is the control current, x is the control gap, 
and jJ, is the permeability in the magnetic body. Using 
the Taylor series expansion for small values of i and x, 
we can get the following attractive force with linear 
terms 

P =Po-k1x +/si=po+p (3) 

where 

and Po is the bias attractive force. Considering the pair of 

attractive forces, the magnetic force P due to the 
electromagnet along the radial direction X can be modeled 
as th~ following equation: 

P =PI -P2=-2kl x+2/si (4) 
where PI andP2 are the left and right magnet forces, 

respectively. Equation(4) indicates that the actuator total 
forces on each direction. 

2.3 Plant Dynamics 
The flexible rotor shown in Fig.1 is restricted by the 
attractive forces given in Eq.(4). It results 

where 
Moq +~q=Fp +D (5) 

F = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 ]T 
00000000100000 

, •• T 

P =I/JNJrl 
PI = 2 kl ~ - 21s i/ : forces of the AMB-L 

Pr = 2 k) Xs -21s iT : forces of the AMB-R 
and D represents the parameter uncertainty and external 
disturbance. 
The bias attractive forces and the control forces of Eq.(5) 
are sePru:a~ as follows: 

Moq+Kq=F;i+D (6) 

where 

i=[ iziry K=~+K; 
K;=diag(OO 0 0 -2kl 0 0 0 -2kl 0 0 000) 

F=[ 0 0 0 0 -~ 0 0 0 0 0 0 0 0 O]T 
I 0 0 0 0 0 0 0 0 -2kz 0 0 0 0 0 

AMB-L AMBR 

X, 

e 

'I~. " J~~l' c~.I. '. ~I 
Fig.] Model offlexible rotor 
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Using the modal analysis technique, we can choose the 
following normalized modal matrix, 

q= tpl; (7) 
Equation (6) is transfonned to the form in model 
coordinate as follows: 

¥+A~+.d l;=fii+d (8) 

where 
I=.pMtp d=.pKtp A=2,.a 
F.=.p F. d=.p D Ii I 

where A is called the damping matrix. The damping ratio 
is determined experimentally. The state equation of the 
eleC?'0magnetic-mechanical system is given by 

xf=AfX:f+ Bfu +Df 
where 

xf=[l; ~ r 
A -[ 0 I 1 'r -d-A 

(9) 

If the rotor displacement at the magnetic bearings can be 
measured, the output e~uation is 

y= 0X:f= [ lj Xs] (10) 
where 

0=[ Jif'f' 0] 
2.4 Reduced Order Model 
Because this MIMO system is originally unstable in 
open loop, the control objective is to levitate the rotor 
and maintain the stability. In this case, there are only 
two unstable rigid modes, and the flexible modes are 
essentially stable. It is complicated to design a controller 
including full order models for this high order flexible 
system. Therefore, the construction of the reduced order 
model is considered upon the standpoint to stabilize the 
two rigid modes and to control the vibration of flexible 
modes. The reduced order model is constructed by 
truncation of the higher order modes in modal 
coordinates. Here, the state equation and the output 
equation including till the it J order mode are written as 
follows: 

xr=Arxr+Bru +Dr 

y=Crxr=[lj Xsy (11) 

where 

X=[~j: ... ,,e~ j; ... ,~]T 
r i. ':2~ ~ 1, ':2, ':! 

Concerning the reduced order model of Eq.(ll), the design 
of control system are done with the case which only the 
rigid modes are considered. In addition, the closed loop 
system has to maintain the robust stability without 
spillover caused by higher order modes ignored above. 

3. Jl. SYNTHESIS THEORY 
The block diagram of 11 synthesis as shown in Fig.2 
includes uncertainty in the loop. We call this a 
generalized component, with a structured uncertainty 
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Fig.2 Block diagram of 11 synthesis 

-, 

model. In general, the uncertainty matrix is block 
diagonal, because the uncertainty in a particular 
component is independent of the uncertainty in other 
components. The transfer function from v to e is 

$= W1KG(1 +KGr l (12) 
If the following condition 

"<PIL <0 (13) 
is satisfied, it is found that the robust stability condition 
is accomplished. The transfer function from w to z is 
given by 

<P=W2(l+KGr' (14) 
So, if the closed loop system satisfy the following 
condition in any time 

"<PIL <1 , (15) 
the nominal performance is achived. If these two 
conditions of Eqs.(13) and (15) are simultaneously 
satisfied, it is just the same as H~ control with mixed 
sensitivity problem. In addition to these conditions, we 
have to satisfy one more condition in 11 synthesis as 
follows; 

sUfu(L1):>IIIFuCM,A)II~:'5:I (16) 
where F u is call a linear fractional transformation and is 
defined by 

F u(M,A)=M22 +M2IA(1 -MllAr'MI2 (17) 
However, it is so difficult to look for the condition to 
satisfy Eq.(16). We consider the following expression 
instead of Eq.(16). 

11L1(M) <1 (18) 
where, J1 L1 (M) < 1 is defmed by 

11L1(M) = 1 (19) 
min{O'(A):AEA,det(I-MA)=O} 

11L1(M) is called a structured singular value. The 
denominator of Eq.(I9) means the smallest perturbation 
which causes "instability" of the constant matrix feedback 
loop. As the structured sigular value is converse as shown 
in Eq.(19), the smaller 11 means that the limit of 
destabilization increases for parameter variations and the 
closed loop system has more strong robust performances. 
It is known that 11L1(M) has the following relation, 

maxP(QM) :'5:11L1(M) ~inf(j(DMD-') (20) 
where D is called the scaling matrix. We finally carry 
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- .\ out some computations of infC1(DMD ) instead of 
P,j(M) for structured 
singular value. 

4. DESIGN OF Jl CONTROL SYSTEM 
We designed the P control system using D-K iteration as 
an aproximate solution. The fourth-order system is used 
for control system design as reduced order model G(s). 
Using the weighting functions W1(s), W2~) as shown 
in Fig.3 and the generalized plant P(s) with the 12th
order as shown in Fig.2, We design the H~ controller at 
first. Next, we did P analysis for the H~ controller. 
Figure 4 shows its P plot. The maximum value of P 
was 4.6, so it is not enough to satisfy Eq.(18). 
Therefore, the scaling matrix D is approximated by a 
zero-order transfer function with stable and minimum 
phase. The new g'eneralized plant P 2 is configulated 
including the scaling matrix D. P1 controller is 
designed using P 2 and f.l plot is shown in Fig.S. Since 
maximum P is 0.82 from Fig.5, the robust performances 
are accomplished in this system with f.lJ controller. We 
had the smallest J1 plot as shown in Fig.6 in the case of 
J12 controller in same procedure. Figure 7 shows the 
designed controllers. 

5. EXPERIMENTAL RESULTS 
5.1 Test Rig 
The test rig of the magnetic bearing system under 
consideration is shown in Fig.8. The parameter values 
of this test rig are shown in Table 1. A induction motor 
rotor is located in the middle of the shaft and two radial 
magnetic bearings are located on both sides of the motor 
rotor. A thrust magnetic bearing is located at left end of 
the shaft. Figure 9 shows the configulation of 
experiments. 
In this experimental set up, a linear analog compensator 
was also applied in each axis based on the models 
ignoring the coupling effects among various axes. we can 
choose the control system by either the linear analog 
compensator, or H~,P control. 
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Fig. 7 Frequency response of H~, P1 and J12 
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Fig.8 Test rig of flexible rotor magnetic bearing 
system with five-axis control 

~.2 J1 Control with Two-Axis Control 
In this section, the x direction is controlled by 
,r and J1 control, and the y direction is by PID control. 
Figures 10(a),11(a) and 12(a) show the typical step time 
history response at the lift off. It is found that the offset 
is reduced in the case of J.lz controller. This is caused by 
the strong integrator. Figures lO(b),l1(b) and 12(b) 
show the robust performances for parameter variations in 
cases that the rotor mass increases. The nominal mass of 
\lIe rotor is 5.5 Kg. The upper limits of variation rates 
from the nominal value are 15% for H= , 40% for J11 
and 50% for J.lz. This means that the system becomes 
unstable if the pertubation exceeds these rates. It can be 
seen that the closed loop system with J12 controller has 
superior robust performances to eliminate disturbances 
and to maintain the low sensitivity for the system 
parameter variation. It is very important to decrease the 
structured singular value J1 if possible. It is not easy for 
conventional analog compensator to realize the similar 
good perfonnance. 

5.3 J1 Control with Four-Axis Control 
Next, both of the X and Y directions are controlled by 
DSP based H~ and J1 control. Figures 13,14 and 15 
show the step time history responses at the lift off. In 
these cases, the robust performances go up comparing 
with Section 5.2. The upper limits of variation rates 
from the nominal value are 29% for Hoo 

, 56% for J11 
and 73% for J.lz . It is considered that the upper limits of 
variation rate go down because PID controller cannot 
realize excellent robust performances in the case of 
Section 5.2. These results are very similar to the 
simulation results. We have already succeeded high speed 
rotating tests up to 30000 rpm using 112 controller. 

6. CONCLUSIONS 
In this paper, we designed J1 controllers for flexible rotor 
Imagnetic bearing systems applying J1 synthesis theory. 

Table 1 Parameters used for modelling 

Parameter Value 

Mass 

Length 

m l 0.03 kg 
m, 0.15 kg 

111, 1.0 kg 

m, 0.5 kg 

1115 1.0 kg 

~ 0.0 kg 

1117 0.09 kg 

~ 0.09 m 
L, 0.072 m 

L, 0.09 m 

I~ 0.09 111 

1, 0.091 111 

T--< 0.091 111 

• • 
A.M.B 

Parameter Value 

Diameter d 0.0275 m 

Gap x" 0.0003 m 

Hias current jo 3.0 A 

Bias attractive 

force Po 100.0 N 

Damping ratio 

(j= 1, ... ,14) I; I 0.001 

Permeability in 

magnetic body /.l 2n XIO·J 

Permcability in 

magnetic air f-1o 4n X 10.7 

i 
~I 

Fig.9 Configuration of DSP-based J1 control system 

The excellent robust performances of J1 control sysytem 
are made clear comparing with H~ control. The 
conclusions are summarized as follows; 
(1) We have realized the stabilization of the magnetic 
levitation system with high stiffness applying J.1 
synthesis theory. 
(2) It is found that J1 control system has excellent robust 
performances comparing with H~ control through 
simulations and experiments. 
(3) It is very important to decrease the structured singular 
value J1 to realize a excellent robust performance. 
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