
Fourth International Symposium on Magnetic Bearings, August 1994, ETIl Zurich 

RELIABLE, HIGH-SPEED DIGITAL CONTROL FOR MAGNETIC BEARINGS 

Ronald D. Williams 
Paul M. Wayner 
Jeffrey A. Ebert 

Stephen J. Fedigan 
Center for Magnetic Bearings 

University of Virginia 
Charlottesville, Virginia, U.S.A. 

AnSTRACT 

Mnny magnetic bearing applications demand significant 
prucessing power, while others require higher reliability 
I han that provided by a single processor system. A digi
tal controller has been developed which strives to meet 
I>oth of these needs in one powerful, flexible platform. 
This controller employs four processing modules based 
on the Texas Instruments TMS320C40 digital signal 
processor to provide hardware redundancy for fault-tol
erance or for mUltiprocessing. A real-time, multitasking 
operating system has been designed to support all of 
these features, while aiding the application designer's 
implementation of complex control algorithms. 

INTRODUCTION 
The design of a magnetic bearing controller is a signifi
cant challenge for several reasons. High-speed rotors 
demand high bandwidth control systems, and the prob
lems involved with tuning these systems demand flexi
ble control systems. In addition, to make magnetic 
bearings practica1 and cost-effective in industrial set
tings, the controller must be very reliable for long peri
ods of operation. Traditional analog controllers can 
meet the bandwidth requirements, but their reliability is 
often poor. Furthennore, the inflexibility of analog con
trollers hampers the setup of new rigs and new control 
schemes. Digital controllers offer tremendous advan
tages in terms of flexibility and ease of development, but 
have also traditionally suffered from low reliability. The 
digital controller under development at the University of 
Virginia is capable of operating in a fault-tolerant mode 
that will provide reliable performance without sacrific-

This work was supported by Virginia's Center for Inno
vative Technology 

ing bandwidth, flexibility, or ease of use. For applica
tions (hat require extra computational power, this 
controller can be configured to operate in a mUltipro
cessing mode. 

BACKGROUND 
The Center for Magnetic Bearings at the University of 
Virginia has been conducting magnetic bearing research 
in a wide range of areas since 1984. This research has 
included work in analog controllers, digital controllers 
and algorithms, power amplifiers, industrial applica
tions, and magnetic bearing/rotor system dynamies [1]. 
Several digital controllers, tailored for magnetic bearing 
control, have been designed and built over the past ten 
years. The first effort was based on an ffiM-type per
sonal computer, using a multiplexed analog input/output 
(lIO) subsystem. This simple system successfully sup
ported a small, flexible rotor, but the controller sampling 
rate was restricted by the 8086 CPU to approximately 
3 kHz [2]. 
The second controller design attempted to improve per
formance by creating an architecture customized for 
magnetic bearing control. This design employed many 
separate digital control modules (DCM) for executing 
single-axis control, governed by a supervisory com
puter. Each DCM was based on the Texas Instruments 
TMS320C25, a fixed-point digital signal processor 
(DSP) [1 J. This work initiated the use of DSPs for mag
netic bearing control at the University of Virginia, a 
practice that continues in the present design effort. 
The third-generation digital controller, the Integrated 
Controller for Magnetic Bearings (ICMB), was 
designed using a single CPU, the TMS320C30 floating
point DSP, with modular analog lIO capability [3]. 
Additional system hardware, such as a Motorola 
68HCII microcontroller, supports the 'C30, so that its 

1 



2 CONTROL (GENERAL) 

effort may be focused on executing the control algo
rithm. A real-time multitasking operating system has 
been developed for this system, easing algorithm 
design, development, and evaluation [4]. As a result of 
this work, the ICMB is in near constant use by a variety 
of projects for development of magnetic bearing control 
algorithms. 

SYSTEM REQUIREMENTS 
The fault tolerant design goal for the digital controller is 
to have a reliability of 0.999 over two years of continu
ous operation. To achieve this goal, modular hardware is 
used because it facilitates replacement and repair which 
greatly boosts long-term reliability. Processing modules 
with identical capabilities will also simplify the design 
and maintenance of software. Because of the need for 
high-speed processing in magnetic bearing controls, the 
fault-tolerant scheme is designed around hardware 
redundancy rather than time redundancy or information 
redundancy, both of which can put burdens on the pro
cessor and thus reduce processing speed. 
Since this platform is targeted at multiple projects with 
evolving needs, the system must be scalable in regard to 
processing performance and the number of analog 110 
channels. This platform can have multiple processors or 
just one, a few analog channels or many, plus additional 
cards for digital 110 can be added, all depending upon 
the needs of the application. System software should 
permit a user who has written an application program 
for a certain number of processors to modify that pro
gram easily to execute on either a smaller or larger num
ber of processors. Thus, the system can be configured 
for very high performance or a less expensive version 
can be built and then expanded later. 
Over the past two years, a suite of applications has been 
developed on the University of Virginia's 'C30 based 
hardware platform, including routines that implement 
high speed digital filters and adaptive on-line balancing. 
For the most part, these routines have been written in C, 
with certain time-critical portions written in 'C30 

FIGURE 1: Fault-Tolerant Configuration 

assembly language. The code has been compiled with an 
Optimizing C Compiler provided by Texas Instruments. 
Additionally, these routines include service calls to a 
real-time operating system. Since considerable effort 
has gone into writing and debugging existing applica
tion programs, an important requirement is portability 
between the 'C30 and 'C40 platforms. Compatibility is 
ensured by using the 'C40, whose instructions are a 
super set of the 'C30's, the same suite of development 
tools, which can generate code for either the 'C30 or the 
'C40, and retaining the same application program inter
face (API) in the advanced version of the Real-Time 
Operating System (RTOS). 

ARCHITECTURE SPECIFICATION 
The architecture of the system may be divided into three 
major sections: a processor subsystem consisting of one 
to four computer modules; a communications and self
testing subsystem, or processor-IIO link (PIOL); and an 
110 expansion bus with ten slots. The computer modules 
are TIM-40s, a Texas Instruments open-standard that is 
based on their TMS320C40 DSP [5]. The processor sub
system is a fully-interconnected network of these com
puter modules. The PIOL provides a communication 
link between the TIM-40s and the 110 cards. The 110 
boards include data converters, digital 110 transceivers, 
and serial devices. 
The architecture can be configured to achieve two dif
ferent system-level requirements: high reliability or 
multiprocessing. For high reliability the modules are 
connected in a fault-tolerant configuration as shown in 
Figure 1. 
To provide fault-tolerance for the processing section, we 
use the redundant TIM-40s to provide Triple Modular 
Redundancy (TMR) with the additional TIM-40 acting 
as a hot spare. All the TIM-40s are kept hot, running the 
same code. The PIOL provides a synchronizing clock 
signal to all the TIM-40s to ensure that they perform 110 
operations at the same time. The PIOL observes the 
TIM-40 behavior looking for errors. After a TIM-40 has 



Fourth International Symposium on Magne'tic Bearings, August 1994, ETH Zurich 3 

1111(1' a certain number of errors it is replaced. 
h II lI1ultiprocessing the processors are connected as 
.hown in Figure 2. Only one TIM-40 is connected to the 
I'IOL and it controls all access to the PIaL. The full 
Iliinconnection of the TIM-40s allows for them to be 
1I·.·t! in different multiprocessing arrangements such as 
pipes or an array. 
IIIIlh configurations are available using the same hard
wure design. Switching between the two configurations 
\lil ly requires changing the settings of the PIaL and 
llicring the software. 

T IM-40 Modules 
The computing power of the fourth generation digital 
cont roller resides in several computing modules called 
TIM-40 modules. These modules consist of separate 
printed circuit boards that are plugged into the mother
hoard. There are several advantages to this scheme. The 
TIM-40 modules are based on an commercial open stan
dard, thus it is possible to purchase TIM-40 modules 
from several commercial vendors and those modules 
can be used in the controller without modification. The 
modules are easily replaceable, thus facilitating replace
ment for upgrading and repair. 
The TIM-40 standard provides physical and electrical 
specifications. The TIM-40 printed circuit board (PCB) 
measures 4.2" by 2.5" and plugs into the motherboard 
through two connectors. The processor used is the Texas 
Instruments TMS320C40 DSP running at 40 MHz. The 
'C40 is optimized for DSP applications, and it is capable 
of a peak performance of 160 million operations per 
second (MOPS) plus an additional 60 MOPS from the 
direct memory access (DMA) coprocessor. The module 
also has 256 Kbytes of zero-wait state read-write mem
ory (SRAM) and 128 Kbytes of read-only memory 
(EPROM). A simplified block diagram of the module is 
shown in Figure 3. 
The 'C40 Communication Ports (comm ports) are used 
to pass data bidirectionally to the motherboard at a rate 
of 20 Mbytes/sec. The global bus connection is not used 
on our motherboard, however, our TIM-40 module has 
the connection available for possible future use. 

FIGURE 3: TIM-40 Module 

Processor-I/O Link 
High reliability and fault tolerance were motivating 
requirements for the digital controller design, but imple
mentations that sacrificed throughput or flexibility were 
deemed unacceptable. As a result of this decision, we 
avoided commonly used software error checking tech
niques and large-scale data encoding methods. A hard
ware-intensive redundancy and repair scheme was 
adopted to maintain high throughput while hiding fault 
tolerance features from the application designer. Later, a 
separate mode was added to support non-fault-tolerant, 
multiprocessing operation. 
The hardware that provides these features is embodied 
in the Processor-I/O Link (PIOL), a collection of pro
grammable logic devices that reside on the motherboard 
of the digital controller. As shown in Figure 4, the PIaL 
consists of a dedicated communication channel for each 
of the four TIM-40 processing modules, a central, spe
cialized voting unit, a repair and reconfiguration unit, 
and a bus controller for the I/O Bus. 
As the name suggests, the primary purpose of the PIaL 
is to link the processor and I/O subsystems. The com
munication channels emulate the asynchronous comm 
ports that are found on the 'C40. These communication 
channels synchronize messages that are transmitted 
asynchronously by the independent TIM-40s, and the 
bus controller performs synchronous reads and writes to 
the various I/O modules that may be connected to the 
bus. 
Application software performs I/O reads and writes by 
calling the appropriate operating system service routine, 
passing in the address of a table where the data to be 
written resides or where the data to be read should be 
placed. The RTOS initiates a data transfer by writing the 
appropriate command word to the PIaL. The command 
word specifies the type of operation, the base location in 
the I/O address space, and the number of words to be 
transferred. Block reads and writes as large as 64 words 
are possible. By using the data transfer facilities of the 
'C40 in conjunction with the PIaL, the digital controller 
is capable of performing I/O accesses in parallel with 
computations, thus increasing average throughput and 
sampling frequencies. 
The PIaL operates in one of two modes, fault-tolerant 
or multiprocessing. Thus, the logical configuration of 
the processor subsystem may be altered by changing the 
mode of the PIaL when the digital controller is initial
ized. Figures 1 and 2 illustrate these two logical configu
rations. 
In the fault-tolerant mode, the PIaL provides both pas
sive error correction, by fault-masking, and active repair 
and reconfiguration, by using accumulated error infor
mation. All four of the TIM-40 modules are pro
grammed with the same software, and three of these 
execute this software simultaneously. The fourth is run-



4 CONTROL (GENERAL) 

REPAIR
RECONFIGURATION 

UNIT 

VOTING 
UNIT 

Bus CONTROLLER 
AND DRIVERS 

FIGURE 4: Processor-I/O Link Block Diagram 

ning, but its outputs are ignored; this is the standby 
spare which may be used in case of a failure. 
Messages that are transmitted by the TIM-40s, whether 
command or data, are synchronized and passed through 
the voting unit. If one of the three working processors 
has experienced a fault, producing an erroneous output, 
the voting unit will mask this error because the other 
two processors agree on the correct output. When a read 
occurs, the same data is transmitted to all three proces
sors so that the inputs to the control algorithm running 
on each are the same. 
After a number of errors from a particular TIM-40 mod
ule have been detected and masked by the voting unit, 
the repair and reconfiguration unit reboots the offending 
processor in an attempt to correct the problem. The 
active processors continue to execute the control algo
rithm, supporting the rotor, while the bad processor 
restarts and performs a series of self-tests. If the bad 
processor fails to recover, or if a particular processor 
must be rebooted frequently, it is marked as failed and 
replaced by the standby spare. The failed module is 
electrically isolated from the motherboard, and a techni
cian may then replace it without shutting down the con
troller. 
For applications in which performance is more impor
tant than high reliability and long-life, the digital con
troller may be configured for multiprocessing. In this 
mode, the PIOL communicates with only one of the four 
TIM-40 modules, and the voting unit and repair unit are 
disabled. A web of 'C40 comm ports form a fully inter
connected network so that the TIM-40 module that is 
bound to the I/O may act as a server for the other mod
ules, as shown in Figure 2. Many different parallel pro
cessing configurations are possible, and any number of 
TIM-40 modules, from one to four, may be used without 
any alteration to the PIOL hardware or the operating 
system communication routines. Thus, a low-end or 

developmental system with a single processing module 
is also possible. 

110 Bus 
The I/O Bus must provide a two way communication 
link between the PIOL and the I/O boards. This I/O Bus 
must support data transfer rates in the range of the 
comm links while also providing an appropriate level of 
fault-tolerance. The I/O bus has a data transfer rate of 10 
Mbytes per second which is close to the maximum rate 
of the comm links. The data and control lines of the 1/0 
bus are encoded with a one-bit correction two-bit detec
tion code to provide fault tolerance for the bus. 
The I/O Bus is a 5 MHz synchronous bus controlled by 
a single controller which is a part of the PIOL. Data is 
read from and written to I/O boards in the form of 16-bit 
words. The bus can address 64 boards with 8 channels 
per board for a total address space of 512 channels. The 
bus has three operations which are PUT, GET, and 
IDLE. The PUT operation writes a block of data from 
the PIOL to sequential channel addresses on the I/O 
boards. The GET operation reads a block of data from 
sequential channel addresses on the I/O boards to the 
PIOL. The IDLE operation causes the I/O controller to 
neither read or write. Updating board values is done by 
performing a PUT operation to a reserved address which 
causes the appropriate board to update its values. It is 
also possible to update all inputs or all outputs or all 
inputs and outputs by performing a PUT operation to 
reserved addresses. 
The ability to perform block data transfers makes it easy 
for the system to read all the input data in one operation 
and write all the output in another operation. The updat
ing scheme allows simultaneous updating of inputs and 
outputs. This facilitates state-space control by allowing 
the controller to capture the system state with one opera
tion. 



Fourth International Symposium on Magnetic Bearings. August 1994. EI'H Zurich 5 

HI I ·TIMI~ OPERATING SYSTEM 
lit III(" dilate rapid prototyping of control algorithms, 
11\ II plOcessing module will be equipped with an h" 1111 ('(; (1 version of the Real-Time Operating System 

"I l!' l"p~d at the University of Virginia specifically for 
IIIIII :llI"li c bearings applications. The current version of 
II" Inos provides implementation support for control 
11 ,, \ 1111 hillS executing on a hardware platform centered 
IIl'lI llIl a single Texas Instruments TMS320C30 Digital 
'oIl' lIlI l Processor. 
1111 II simple algorithm that employs multiple indepen
,1,"1 channels of feedback control, the current version of 
IIIf" Inos directs the sequencing of events in an control 
, VI I! ' ;lI1d handles all the low level interaction with con
II " lll'r hardware. At the beginning of a control cycle, the 
I TUS issues a sampling command to the analog input 
hll:lId. and selected input channels are sampled. When 
Ilt l' COil version cycle has completed, the RTOS retrieves 
II,,' data from the AID board, transfers this data to a 
··I>lT itied buffer, and activates the control program. The 
1'1 (lgram can immediately begin transforming the input 
d.II;1 into a set of actuator commands which are handed 
," I 10 the RTOS when the computation is finished. The 
Inus suspends the control program when the new com-
1I1i1llds are received, and waits for the end of the cycle 
Il('fore updating selected channels on the D/A. Despite 
variations in the control program's run time, the RTOS 
III:tintains a uniform sampling rate and a fixed time 
delay from input to output. This benefits the feedback 
m ntroller by permitting all discrete-time coefficients to 
h . calculated in advance, thus reducing the computation 
II> a series of multiply and accumulate operations, which 
111l: DSP can perform efficiently. 
A more sophisticated control scheme can benefit from 
Ih~ pre-emptive, prioritized multitasking environment 
provided by the operating system. Consider an adaptive 
halancing system which cancels rotor synchronous 
vibration at the sensor locations. The algorithm works 
by injecting a set of synchronous balancing forces, and 
observing the synchronous response. From this data, it 
constructs an influence matrix which defines the gain 
and phase relationship between every force input and 
SL: l1sor output. In turn, this influence matrix is used to 
determine the set of open loop forces which will mini
mize shaft vibration at selected sensor locations. Since 
these open loop forces cancel only the imbalance and do 
not stabilize the rotor, the automatic balancing scheme 
must operate in tandem with a feedback controller. 
The control scheme just described has program ele
ments which operate on widely different time scales. 
The portions of the algorithm which calculate feedback 
control forces, inject the synchronous forces, and calcu
late the synchronous responses all should be executed a 
great many times during a rotor revolution and on a 
periodic basis, while estimating the influence matrix and 

calculating a new set of balancing forces may take place 
over several rotor revolutions. 
To implement such a control algorithm, the user may 
place the periodic high frequency and non-periodic low 
frequency program elements in a separate program 
loops, or tasks. The high frequency periodic task can be 
assigned a high priority and the low frequency non-peri
odic task a low priority. When the high priority task 
completes its execution for a particular 110 cycle, it vol
untarily suspends itself, and the RTOS automatically 
switches to the low priority task. The low priority task 
executes until the beginning of the next 110 cycle at 
which point, the RTOS preempts the low priority task, 
returning control back to the high priority task. 
With this arrangement, the RTOS can allocate a small 
slice of processing time to the low priority task between 
successive runs of the high priority task. Since time slic
ing and context switching is handled automatically, the 
low priority task can be written as though it executes 
without interruption. This approach affords an important 
benefit. Providing that the interaction between the tasks 
is defined at the outset and remains the same, each con
trol task can be developed, and modified independently. 
For example, this modularity enables the user to experi
ment with different estimation or minimization schemes 
in the low priority task without the need to modify the 
high priority task. 
In fault tolerant mode, each TIM-40 module will exe
cute identical versions of the advanced RTOS and the 
same set of application tasks. While the new RTOS will 
direct the sequencing of events in a control cycle, the 
underlying hardware interactions will be different from 
the 'C30 platform. For example, when the application 
issues an 110 request to the operating system, the RTOS 
will perform a block transfer between local memory and 
the communication port linked to the PIOL instead of 
directly reading and writing to memory-mapped 110. 
In mUltiprocessing mode, only one of the TIM-40 mod
ules can interact directly with the PIOL. The RTOS on 
this module will act as a server for 110 requests from 
neighboring modules and from its own application 
tasks. The RTOS on the other three modules will for
ward 110 requests from their application tasks to the 
RTOS acting as 110 server. The 110 requests will be for
warded by sending messages through the communica
tions ports linking the 110 clients to the 110 server. 
When an 110 request has been fulfilled, a message will 
be returned to the sender's RTOS, which will in turn 
pass it to the task that originally made the -request. From 
the application's standpoint, the module appears to have 
its own local bank of 110 even though only a single bank 
of 110 exists on the entire processing system. Except for 
the most 110 intensive tasks, the virtual 110 described 
here gives the designer freedom to move tasks across 
processor boundaries. This could prove useful if a sec-



t w W? 

6 CONTROL (GENERAL) 

ond module is added to a single module system; tasks 
with moderate to low I/O bandwidth requirements could 
be shifted to the second processor to improve system 
performance without difficulty. 
In a multitasking multiprocessing control system, the 
control algorithms must be broken down into a set of 
tasks, and those tasks must be mapped onto the existing 
processor topology. To maximize system performance, 
it may be necessary to evaluate several different task to 
processor mappings. If separate operating system ser
vice calls are required to link tasks on the same process
ing module verses tasks in separate modules, the 
application code would have to be rewritten every time 
interacting tasks are moved from the same to separate 
processing modules. Furthermore, if two tasks are on 
separate TIM-40 modules, an interprocessor communi
cations service may require each task to identify on 
which processor the other resides. If a task moves across 
module boundaries, service call parameters would have 
to be changed. 
To allow the control engineer to evaluate different map
pings rapidly, the advanced operating system will sup
port seamless intertask communications. This means 
that two communicating tasks need only know each 
other's unique identifiers. Messages reach the destina
tion task regardless of where it is actually located. With 
this scheme, tasks can be moved freely among proces
sors without the need to modify calls to task communi
cations services. 
To ensure high performance gains in a parallel process
ing architecture, the overhead required for intertask 
communications must be kept to a minimum. The 
advanced RTOS implements efficient intertask commu
nications by moving data only when absolutely neces
sary. When two tasks are on the same module, instead of 
copying data from one task's buffer queue to another's, 
the two tasks exchange a buffer pointer. By exchanging 
pointers whenever possible, data is only moved twice 
during its lifetime on a particular processing module: 
once when it comes onto the module, and once when it 
leaves. 
When two tasks reside on separate modules, data must 
be transferred between them. The RTOS virtually elimi
nates the CPU's participation in the data transfer by tak
ing advantage of the C40's six channel DMA 
coprocessor [5]. Without the coprocessor, the CPU 
would have to spend valuable processor cycles transfer
ring data between the communications ports and local 
memory. With the coprocessor, the CPU can spend more 
of its time performing computationally intensive tasks, 
by delegating burdensome transfers to the DMA con
troller. In fact, the coprocessor even has a special split 
mode, designed specifically for transfers between the 
communication ports and local memory. 
To simplify setting up a DMA transfer, the RTOS 

reserves space in intertask communication buffers for 
DMA initialization data which does not change once the 
buffer is created. The DMA channel can even autoini
tialize, sparing the CPU from loading all the control reg
isters every time a DMA transfer is initialized. To begin 
a transfer, alI the RTOS does is set a pointer to the ini
tialization data and set a start flag in the DMA control 
register. This reduces the CPU time spent with interpro
cess or transfers even further. 

SUMMARY 
The real-time operating system in combination with the 
hardware architecture will support both the high reli
ability and high performance missions of the controller. 
Schemes that carry out fault tolerant coil control can be 
implemented as background tasks without significantly 
impacting the performance of the feedback controller. 
The integrity of the outputs delivered through this map
ping scheme are ensured by the processor I/O link, 
which implements triple modular redundancy with 
active standby sparing. Sophisticated control schemes, 
such as one which simultaneously cancels vibration at 
the running speed and selected harmonics demand the 
high performance offered by the multiprocessing mode. 
The flexible processor topology permits the designer to 
distribute the processing load in a way that will provide 
the highest possible throughput. The real-time operating 
system in turn enables the designer to determine rapidly 
the optimum task to processor mapping by providing 
both seamless intertask communications and virtual I/O. 

REFERENCES 
1. D' Addio, 1.K., R.D. Williams, F.l. Keith, S.1. Fedi
gan. "Advanced Digital Controller Design for Magnetic 
Bearings." In Proceedings of the Conference on Recent 
Advances in Active Control of Sound and Vibration, p. 
408-419, Blacksburg, Virginia.April, 1991. 
2. Keith, F.l., "Digital Control System Design for 
Active Magnetic Bearings," M.S. Thesis, University of 
Virginia, May, 1988. 
3. D' Addio, 1.K. "An Integrated Magnetic Bearing 
Controller," M.S. Thesis, University of Virginia, May, 
1992. 
4. Fedigan, S.1., "A Real-Time Operating System for 
a Magnetic Bearings Digital Controller," M.S. Thesis, 
University of Virginia, May 1993. 
5. TMS320C4X User's Guide, Texas Instruments, 
1993. 


