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ABSTRACT This paper presents an autobalancing algorithm with 
several unique features that differentiate it from traditional (notch 
filter) and model based autobalancing algorithms. The algorithm, called 
Adaptive Forced Balancing with Frequency Tracking (AFB/FT), has the 
following features: 1) there is no effect on control system bandwidth or 
stability, 2) a dynamic model of the magnetic bearing system is not 
needed, and 3) regulation of the entire shaft-actuator-control system in 
a minimum energy state is achieved. This algorithm includes a 
frequency tracking section which automatically estimates the shaft 
rotational rate. The combined algorithm simultaneously tracks the 
amplitude, phase and frequency of a synchronous disturbance in real
time. AFB/FT was implemented on a TI Digital Signal Processor (DSP) 
as part of a complete control system designed to support a single end 
suspension test rig. This paper presents the AFB/FT algorithm, 
describes the test rig and control system components and presents test 
data which demonstrates the effectiveness of the algorithm. 
Preliminary results show that AFB/FT provides at least 30 dB reduction 
in actuator control current at 3600 rpm. 

INTRODUCTION 

The application of magnetic bearings to rotating systems provides 
a means to actively control bearing stiffness and damping which, in 
turn, can modify the dynamic response of the system. The use of a 
magnetic bearing actuator also permits the compensation of rotor mass 
unbalance. This "compensation" can be applied in two distinct ways 
causing the shaft to either rotate around its center of mass or center of 
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geometry, depending on the desired result. Shaft rotation around the 
center of mass termed autobalancing is the subject of this research. 

A technique to accomplish autobalancing called Adaptive Forced 
Balancing (AFB) has been developed, implemented and tested using 
laboratory hardware. AFB implements an energy minimization 
algorithm to estimate the mass unbalance magnitude and phase. 
Unbalance amplitude and phase estimates are used to remove the 
synchronous component from the sensor output in defining the control 
system error. The energy of the synchronous component contained in 
the control system output is minimized, thereby allowing the shaft to 
rotate about its inertial axis. AFB also adapts to changes in the 
amplitude and/or phase of the unbalance, always driving the system to 
a minimum energy state in the process. 

Adaptive Forced Balancing has several unique features which 
differentiate it from former autobalancing techniques. Previous 
autobalancing techniques include tracking notch filter designs [1], 
model based observer designs [2], and off-line least square 
approximation designs [3], just to name a few. AFB, the research topic 
of Beale [4], differs from notch filter designs in that it operates external 
to the stabilizing control loop, does not affect loop gain or phase, and 
can operate within the loop bandwidth. It differs from model based 
observer designs in that it requires no model and is therefore robust to 
modeling errors and time-varying plant parameters. The AFB 
algorithm is run in real-time, in parallel with the digital control laws, 
and requires no off-line computations. 

Previous autobalancing research has always contained the 
implied need for external knowledge of the frequency of shaft rotation 
and hence the unbalance disturbance. This information may come from 
resolvers or tachometers or perhaps synchronous driven interrupts. 
The AFB algorithm is no exception. It requires precise shaft rotational 
rate information to provide adequate autobalancing. However, AFB 
also provides the means to adaptively estimate shaft rotation rate 
without any external knowledge. A Frequency Tracking algorithm 
developed to operate in synergy with AFB provides accurate shaft rate 
information. The combined algorithm. Adaptive Forced Balancing with 
Frequency Tracking (AFB/FT) simultaneously tracks mass unbalance 
amplitude, phase and frequency in. one integrated algorithm. 

This paper presents the AFB/FT algorithm and describes its 
operation. Its energy minimization properties are derived and 
discussed. The paper then describes the single end magnetic 
suspension test rig used to validate and verify AFB/FT operation. The 
test rig includes a DSP based control system which provides digital 
control to stabilize the rotating shaft. Hardware results are presented 
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to show the effectiveness of the Adaptive Forced Balancing with 
Frequency Tracking algorithm. 

PROBLEM DEFINITION AND ANALYSIS 

A control loop for one axis of the magnetic bearing with 
unbalanced rotor, as shown in Figure 1, is represented by a single-
input single-output (SISO), linear time-invariant (LTI) system. The 
plant P(s) represents electrical amplification, the linearized transfer 
characteristic of the magnetic bearing, and rotor dynamics. Plant input 
u(s) represents magnetic bearing actuator current command, and 
output y(s) represents the rotor cross sectional center of mass position 
relative to the radial axis of the magnetic bearing stator. The origin of 
a Y-Z coordinate axes, defined on the radial plane of the stator, is at the 
geometric center of the stator. When the geometric center of the rotor, 
yg(s), is not coincident with the rotor center of mass position y(s), 
yg(s) contains a synchronous measurement disturbance dQ(s) at 
frequency cox, the rotational frequency of the shaft. In the time domain 
dQ(s) has the form 

dD(t) = adsin(coxt) + pdcos((oxt), (1) 

where ad, Pd are the Fourier coefficients of the synchronous 
disturbance. Compensator C(s) stabilizes the system and, together with 
the plant, has infinite position error coefficient so that y(s) tracks step 
reference command r(s) with zero steady state error. An identical 
control loop operates on and stabilizes the Z axis of the system. 
Crosscoupling between the two control loops, which occurs through the 
rotor dynamics, is negligible since the rotor shaft is rigid and magnetic 
bearing actuation occurs at one end of the shaft only. 

Compensation for rotor mass unbalance can be achieved by 
adding a second synchronous signal rft(s) to the reference input. The 
system output is then decomposed into the sum of three terms: 

y(s) = T(s)r(s) + T(s)(ra(s) - dfl(s)), (2) 

where T(s) is the complementary sensitivity function given by 

T(s) = P(s)C(s)/(l +P(s)C(s)). • (3) 
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Typically IT(jco)l is unity (0 dB) below the system bandwidth1
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Figure 1. SISO, L T I Model of Magnetic Bearing Control Loop 

In conventional mass unbalance compensation techniques 
(rf l(s)=0), the system output response due to input dQ(s) is eliminated 
or "filtered out" by one of two methods: inserting a notch filter into the 
control loop or, in the case of model-based mass unbalance 
compensation, adding a second, observer-type compensator to the 
system. Both methods essentially alter the resulting system 
complementary sensitivity function so that either a "notch" in IT(jco)l is 
present at the frequency of rotation cox or IT(jco)l rolls-off before 0)x (i.e., 
so that the resulting system bandwidth is well below co x). 
Unfortunately, making a "notch" in IT(jco)l within or near system 
bandwidth can eliminate the stability margin of the system because of 
the associated changes in phase; furthermore, sensitivity reduction 
properties are severely reduced at frequencies near cox. On the other 
hand, making ( O B W < < W X wi l l severely degrade the desired transient 
response and plant disturbance rejection properties of the system. 

A F B ANALYSIS AND DESIGN 

To overcome the problems associated with the conventional 
methods a synchronous reference signal r^is) is computed and inserted 

^he system bandwidth in this case is defined as the frequency at which IT(jco)l is 
-3dB. 
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at the reference summing point as shown in Figure 1. The effect of 
rn(s) is to cancel the component of the system output due to dQ(s) by 
making the factor rQ(s)-dQ(s)=0 in Equation (2) without changing the 
frequency response of T(s). This approach is desirable because the 
compensator C(s) can now be designed with the assumption that the 
rotor is perfectly balanced (dQ(s)=0).> 

The reference signal has the form: 

rnCO = a r(t)sin(o)xt) + pr(t)cos(coxt), (4) 

where ar(t)=ar(kTs)=a(k), pr(t)=pr(kT s)=p(k), k=0,l,2,... are discrete 
time-varying Fourier coefficients computed on-line and updated at a 
sampling period T s The adaptive laws governing a(k), P(k) are given 
by 

a(k+l) = a(k) + vq(k)p a(k)n(k), k=:0,l,2,... (5a) 

p(k+l) = p(k) + v(l-q(k))pp(k)n(k), k=0,l,2,... (5b) 

respectively, where n(k)Hn u(kT s) is the norm or energy of the 
synchronous component of the control signal u(t) at sample time k. The 
norm function n u(t) is obtained by demodulation and filtering of u(t) 
followed by a complex magnitude calculation. The functional blocks of 
the AFB compensator are shown in Figure 2. The cut-off frequency of 
the demod filters depends upon approximate knowledge of the 
rotational frequency a>x. The enable function q(k)£{0,l}, and polarity 
functions pa(k), pp(k)e { +1,-1} are computed by an algorithm which 
seeks to minimize the norm or energy function n u(t). Finally, the 
constant gain v is chosen a priori from given, approximate knowledge 
of the gain l/IS(jo)x)C(jcox)l, where S(s) is the sensitivity function of the 
system. 

Consequently, the entire class of AFB compensators can be 
characterized by the two scalar parameters cox and v. This 
characterization facilitates quick design and flexible implementation. 
For example, AFB can be applied to different magnetic bearing 
applications or diverse synchronous disturbance rejection problems 
simply by modifying the demod filter bandwidth (a function of cax) 
and the gain v. The gain v depends upon of the nominal value of the 
gain l/IS(ja)x)C(jcox)l and is robust to time-varying plant parameters and 
modeling errors. 

It can be shown [4] that the norm function n(k) is proportional to 
[(a(k)-(Xd) 2 + (P(k)-Pd) 2 ] 1 / 2 . (6) 
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In Equation (6) there are two time-varying parameters, a(k) and P(k). 
If p(k) is held constant, a change in n(k) represents a change in the 
error la(k) - adl. An enable function q(k) is used to hold one Fourier 
coefficient (e.g. P(k)) constant while the other is adapting, and the 
polarity functions Pa(k), pp(k) are used to insert the correct sign of this 
error in the adaptive laws of Equation (5). AFB tracks the amplitude 
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Figure 2. Adaptive Forced Balancing Compensation 

and phase of the unbalance by driving a(k)-»ad and P(k)--»Pd with the 
results that rQ(t)-»dQ(t). Since rQ(t)=dQ(t), the system output response 
due to the synchronous disturbance input is arbitrarily small in steady 
state. In practice the steady state disturbance rejection achieved 
depends only upon the level of random noise in the system and since 
the frequency response of T(s) remains unchanged, the AFB 
compensator successfully removes the synchronous component of the 
plant output without affecting the loop stability or the system 
bandwidth. 

AFB WITH FREQUENCY TRACKING 

In AFB the synchronous reference signal rn(t) requires that a 
sine and cosine signal be generated at the frequency of shaft rotation 
cox (see Equation (4)). These sine and cosine waveforms can be 
generated from a tachometer measurement or other form of rotational 
sensor. I f no hardware is available to provide cox, a frequency tracking 
(FT) algorithm must be included to provide estimates of G)x. The 
combined AFB/FT algorithm, shown in Figure 3, simultaneously tracks 
the amplitude, phase and frequency of the mass unbalance in one 
unified algorithm. 
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Referring to Figure 3, the FT algorithm inputs are the Fourier 
coefficients a(k) and P(k) and intermediate results from the 

synchronous energy calculation. FT produces one output, o)x, which is 
used in the generation of the reference sine waves. The error cax-cox is 
driven to zero through the feedback paths which generate signals TQ(t) 
and n u ( t ) . 
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Figure 3. Adaptive Forced Balancing with Frequency Tracking 

TEST RIG DESCRIPTION 

The AFB/FT algorithm is combined with stabilizing digital control 
laws, implemented in a digital signal processor and tested on a single 
end, magnetic bearing suspension test rig. The test rig consists of a 
Draper designed, low power, magnetic bearing which supports a 150 lb 
shaft at one of its ends2. The other end is supported by rolling element 
spherical bearing. The shaft is driven by a motor capable of 8000 rpm. 
Commercial position sensors are used to provide position information to 
the stabilizing digital control laws. The position signals are digitized by 
an A/D converter, processed using a TI TMS320C30 DSP, and the 
resulting control current commands are sent to a pair of current 
controlled analog amplifiers via the D/A converters. 

2The first critical of the shaft is approximately 270 Hertz. 
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The stabilizing control system consists of decoupled PID 
controllers operating at a 1 kHz sample rate. The band.width of the 
control system is selected to be 70 Hz. The 70 Hz bandwidth is selected 
intentionally to demonstrate that AFB/FT can operate within the 
system loop gain bandwidth without any adverse effects on system 
performance. 

AFB/FT IMPLEMENTATION 

The AFB/FT algorithm is coded in ' C for real-time execution in 
tandem with the digital control laws. The Fourier coefficient computer 
section of the AFB/FT algorithm (see Figure 2) operates at subsample 
rates of the stabilizing control system. This allows a(k) and P(k) to be 
computed as a background calculation to the real-time, stabilizing 
control system. The signal generator and synchronous energy 
calculator sections of the algorithm, which generate signals rQ(t) and 
n u (t)*, respectively, are run at the same rate as the stabilizing control 
system. 

Two AFB compensators are run independently; one for each axis 
or control loop. Operation of a single AFB compensator to provide two 
axis autobalancing has been simulated but not hardware tested. The 
frequency tracking algorithm is included with one of the AFB 
algorithms to provide rotational rate estimates for both axes. 

EXPERIMENTAL RESULTS 

With the rotor spinning at approximately 3720 rpm (62 Hz), 
AFB/FT compensation is enabled. The input reference command is set 
to zero mils (r(t)=0) so that the system error signal, e(t), represents the 
error in mils between the rotor position, y(t), and the center of 
geometry of the stator. The transient response of the Fourier 

coefficients (ar(t), pr(t)) and frequency (cox) parameters of the 
synchronous reference signal, r^O), along with the corresponding 
transient response of the system error signal are shown in Figure 4. 
The conversion factor to position in mils is given by .00030518 
mils/quanta. At approximately 0.6 sec following application of AFB/FT, 
COx converges to its steady state value. Following convergence of (Ox, the 

* Since these signals are calculated in a digital computer ra(i) and nu(t) are 
discrete signals rQ(k) and nu(k) respectively. 
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Fourier coefficients converge after about one second. In the ideal case 
the error converges to zero mils, which indicates that the shaft is 
rotating about the center of mass of the rotor. However, due to the 
random noise and higher harmonic disturbances (contributed by the 
fixed end of the shaft) present in the system, a random error exists in 
steady state as shown in Figure 4. 

The steady state response of the system error signal is examined 
before and after AFB/FT is used. A snapshot of the time history of the 
error signal is shown in Figure 5(a), and the corresponding normalized 
fast Fourier transform (FFT) is shown in Figure 5(b). As can be seen 
elimination of the 62 Hz synchronous component from the error signal 
is in excess of 30 dB. Synchronous component rejection is limited by 
the fact that the intensity of random noise in the system is high 
relative to the degree of static mass unbalance of rotor. 

CONCLUSION 

An autobalancing technique was presented which simultaneously 
tracks rotor mass unbalance amplitude, phase and frequency. This 
algorithm, called Adaptive Forced Balancing with Frequency Tracking, 
does not alter system bandwidth nor destabilize the system when 
included in a stabilizing control loop. AFB/FT is also robust to modeling 
errors and time-varying plant parameters. The algorithm was tested 
on a single end suspension test rig operating near 60 Hz. AFB/FT 
successfully compensated mass unbalance at operating frequencies 
within the system bandwidth of 70 Hz with no adverse effects. 
Hardware results indicate that AFB/FT reduced the synchronous 
component of the system error signal and, hence, the magnetic bearing 
actuator current command by at least 30 dB. 
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