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A B S T R A C T 

The most familiar control concept in todays AMB applications is to just emulate spring-
damper characteristics by PD controllers. For high performance AMB systems more powerful 
controller layout tools are needed. 
QDES, a new CAD tool for controller layout is applied to magnetic bearing systems. The 
advantages of this powerful tool are explained and discussed. QDES is based on the so-called 
convex optimization over the set of all stabilizing controller, allowing to consider for most 
control specifications and to find the 'best' solution of all stabilizing controllers. 

1. INTRODUCTION: 

One major advantage of AMBs is the ability to actively control the bearing force and bearing 
characteristics. AMBs are therefore excellently suitable for vibration control, e.g. vibration 
isolation, force-free rotation, and unbalance cancellation to cross critical speeds. 
Our presentation deals with a new controller layout tool for active magnetic bearings. In 
todays industrial applications of AMBs mostly the characteristics of well-known passive 
control elements such as springs and dampers (PD) are emulated. But AMBs are active 
elements including a much wider potential using more sophisticated control concepts for the 
main controller and the actuator [Siegwart et al. 91]. 
The feedback control feeds back the sensed values (e.g. displacement) to the AMB force 
according to an on-line control law. There is no a priori Umitation on the control law structure 
(e.g. PD) for AMBs. In this paper, QDES, a CAD-tool for controller layout based on the 
convex optimization of the set of all stabilizing controller, is applied to AMBs. QDES allows 
to numerically find all stabilizing controllers meeting given specifications. This can lead to 
much higher performance of the closed loop system than e.g. 'simple' PD controllers. 
Moreover this method allows to find the best solution to your optimization problem which is 
satisfying all proposed specifications. 
The controller layout with QDES is discussed on a two-mass oscillator suspended by AMBs 
(figure 3-1). 
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2 . CONTROL PROBLEM 

AMB-systems can usually be modelled as linear systems, even if the AMB-actuator is not 
absolutely linear. We therefore assume that the plant P and controller C are linear and time-
invariant (LTI). 
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Figure 2-1: Block scheme of a typical AMB-system 

Figure 2-1 shows a general AMB system, where GA(S) is the transfer matrix of the AMB-
actuator, (J7?(S) the transfer matrix of the rotor plant (suspended body) and GF(S) that of the 
sensor and signal filtering. The transfer matrices GA(S), GR(S) and Gf(s) describe the AMB-
plant P. C(z) is the transfer matrix of the discrete controller C which has to be designed. 
The inputs to the plant are divided into two vector signals: 
- The actuator input vector u, consisting of those inputs to the plant which can be 

manipulated by the controller. : 
- The exogenous input vector w, consisting of all other input quantities such as noise, 

excitation forces, etc. 
The output of the plant consists of two vector signals: 
- The measured output vector y, consisting of those measured signals which are accessible 

to the controller. 
- The regulated output vector z, consisting of all outputs of interest such as actuator input, 

rotor displacements, measured and non measured state variables. 
This notation of the plant includes more details about the AMB system than it is common in 
classical control [Boyd et al. 90]. The exogenous inputs and regulated variables contain each 
signal subject to constraints or specification, whether it is measured or not. 
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Specifications for the Controller Layout 

The controller layout of an AMB system is always restricted by different constraints and 
specifications. They have to be defined by the AMB-engineer and include e.g. physical 
aspects of the plant and specifications on the system performance. Common examples are 
closed loop stability, maximum stiffness over a given frequency band, limitation of the 
amplifier's bandwith, noise rejection, noise filtering, force free rotation around the inertial 
axis, damping to cross critical speed, vibration rejection and robustness against to changes in 
the plant, modelling errors and nonlinearities. 
The constraints and specifications define upper and lower bounds for the input-output 
behavior of the AMB-system shown in figure 3-1. 
Usually the different constraints and specifications are in opposition to each other and it is 
therefore not an easy task to find a solution for the control problem. 

3 . QDES: A VERSATILE CAD METHOD FOR A M B CONTROLLER DESIGN 

QDES is a CAD computer code with an underlying controller design philosophy which has 
been elaborated by Stephen Boyd and his colleagues at Stanford .University [Boyd et al. 88, 
90]. QDES can deal with a great, variety of control objectives and constraints like, frequency 
domain inequalities, time domain overshoot, settling time, rms disturbance response, LQG-
type objective, Z/^-type objective and /ptype objective. It offers numerical solutions to control 
problems where no analytical solution is known. The objectives and constraints are written in 
a control specification language (CSL), a language that comes natural to control engineers. 
QDES reads this CSL control problem specification and translates it into a standard convex 
optimization program which is then solved numerically by effective methods. 
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Figure 3-1: Two-mass oscillator with exogenous disturbances w/, wj 
To verify new control concepts it is helpful to use a simple mechanical example e.g. a two 
mass oscillator. Two-mass oscillators (figure 3-1) have been used extensively for benchmark 
purposes in modern controller design. [Wie et al. 90,91] and can be regarded as very simple 
model of a flexible rotor. 
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The convex program solver first determines whether or not a controller exists which meets the 
given specifications. Therefore, trade-offs among different control specifications can be 
assessed. 
In the next section we present an example of an AMB controller design obtained by QDES. 
The description of the QDES example below is limited to a superficial "user-point-of-view"; 
we intentionally hide the "inside-point-of-view". For an excellent description of the 
underlying controller design philosophy refer to [Boyd et al. 88,90]. 

3.1 QDES Design Example for the Two-Mass Oscillator Benchmark Problem 

Consider the controlled AMB system in figure 3-1. Both sensor and actuator are located at the 
top mass /W2- An unknown main disturbance force z ^ f ) acts on the bottom mass mj. Let the 
objective of controller C be to minimize the frequency domain peak of vibration wi of the 
bottom mass mj. Furthermore, let us impose a number of fairly realistic control constraints by 
considering additional disturbances W2 and n^, see figure 3-1. H^s) denotes the closed loop 
function from input Wj to output Zj. One constraint occuring frequently in practical AMB 
applications is static stiffness. Therefore, we have to impose an upper bound on Hn(0). 

Furthermore, the Nyquist plot of the loop gain PCQco) should not pass the critical point 5=+l 
too closely. This is a very common way to incorporate some stability robustness in the 
controller design. The minimal distance of the loop gain to the critical point is precisely 
inverse to the peak of sensitivity function ^22=^53=l/(l-PC). Therefore, a simple way of 
considering "robustness" is to impose an upper bound on the peak of l / ^G^) ' - One more 
constraint that often makes sense in AMB control is to filter out some harmonic signal (e.g. 
unbalance force) with known frequency (OQ. I f the corresponding amplitude and phase 
information is available, this can be achieved easily by "feedforward" techniques [Larsonneur 
et al. 92]. 

minimize { 

max_Mag_H[1][1]; /* specification of the design objective */ 

1 

subjecMo 

{ /* spec, of the design constraints */ 

/* The 4 constr. are labeled C1 C4. */ 

Mag_H[1][1](0) <= 1.5; /* C1: static stiffness constraint */ 

max_Mag_H[2][2] <= 10; /* C2: loop margin constraint = 0.1 */ 

for w=0.97*%pi/2 to 1.03*%pi/2 step freq_step do 

Mag_H[4][2](w) <= 0.01; /* C3: -40 dB gain "around" omega_0 */ 

for w=0.8*%pi to %pi step freq_step do 

Mag_H[4][2](w) <= 0.1+10*(%pi-w); /* C4: high frequency gain constraint */ 

1 

Table 3-1: CSL specification example for the two-mass oscillator. 
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Otherwise, an additional controller constraint has to be incorporated in the design, that is, 
\H42(jo))\ = \H52Qco)\ = C/(l-PC) should be very small around COQ. Finally, we consider a 
constraint regarding the controller gain at high frequencies. This is very important, since the 
modeling of a flexible rotor often has substantial uncertainties at high frequencies residual 
modes. At high frequencies, C « C/(l-PC) since the plant is usually low-pass. Therefore, a 
constraint of the high frequency gain of controller C can be replaced by an upper bound on 
l//42(jco)l = \H52(jto)I at high frequencies. In summary, the above control problem 
specifications consist in one objective term max [//^(jft))! and four constraints, that are, upper 

bounds (inequalities) regarding //i i(0), max l / ^O^) ' . 1^420^)' '^420^ '• ox»l)\. This 
control problem specification is part of the input data for QDES. It can easily be written in the 
control specification language (CSL) (see table 3-1). 
We fix the physical parameters to mi = m2 = c = 1. The continuous time plant description has 
a double pole at s = 0 (rigid body mode) and "flexible motion" poles at s = ± i V2. 
Furthermore, there are plant transmission zeros at s = ± i . Note that the CSL specifications 
refer to a discrete time description. We choose a sampling period of T = 0.3. The z-domain 
poles are all on the unit circle, namely a double pole at cp = 0 and a pair at (p = 0) T = ± 0.3 
V2 = 0.424. It turns out, that there is also a complex-conjugate pair of z-domain plant 
transmission zeros on the unit circle, interlaced between the poles. A theoretical justification 
for this observation was given in [Herzog et al. 91]. Note that the exact location of the zero is 
not given by the "pole-transformation" formula (p=Q)T. However, in this case the location of 
the transmission zeros turns out to be almost at (p = co T ~ 0.3 since we have a quite fast 
sampling rate. 
We now show the QDES result corresponding to the above plant data and the CSL 
specifications of table 3-1. Following the successful QDES translation phase, the convex 
program solver detected the feasibility of the above control constraints. Note that this is by no 
means a self-evident fact. If QDES would have detected the unfeasibility of the control 
problem, then the constraints should be relaxed or the control configuration should be 
changed. The convex program solver completed the constrained optimization task with a final 
performance value of about = 2.4, i.e. the minimal peak of dynamic compliance IZ/j^'o?)! is = 
2.4. There is no stabilizing controller enabling a better performance and meeting the above 
constraints. See figures 3-2, 3-3 and 3-4 for the optimization results and note, that all of our 
constraint specifications are met. 
Although QDES is a very effective and versatile CAD tool for this kind of control problems, 
there remains an implementation problem since the order of a QDES controller is generally 
much higher than the order of the plant. That is why there remains a strong need to keep up 
with the latest developments in special purpose controller architectures and in modem "closed-
loop" controller reduction schemes [Anderson & Liu 89], [Mustafa & Glover 91]. 
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Figure 3-2: Objective function HJJ. Note the constraint Cl which imposes a static 
compliance below 1.5. 
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Figure 3-3: Sensitivity function H22-Note the constraint C2 : the peak of H22 is below 10. 
Therefore, the minimal distance of the loop gain PC to the critical point s=+l is greater than 
0.1. 
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Figure 3-4: Magnitude and phase response of the resulting QDES controller. Note the 
narrow-band constraint C3 and the high gain constraint C4. Although C3 and C4 are closed-
loop shaping constraints, they also apply to the controller itself since C ~ CI(l-PC) at high 
frequencies. 

5. SUMMARY AND OUTLOOK 

A CAD-tool (QDES), based on convex optimization over the set of all stabilizing controller 
was applied to the two-mass model. The theoretical results show the efficiency of the 
presented controller layout tool and let us expect a big impact on future AMB applications. 
Presently, the effectiveness of the described approache is being experimentally verified. Test 
results are expected soon. 
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