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A B S T R A C T The sliding mode control method from variable structure control theory is 
compared with conventional PID control method for the flexible rotor supported by magnetic 
bearings from the simulations and the experiments in two cases of the lift off and the rotations. 
It has been found that the sliding mode control is very effective and superior to PID control for 
magnetic bearing systems. 

1. I N T R O D U C T I O N It is common knowledge that magnetic bearing is open loop 
unstable system and supersensitive system for parameter deviations because the stiffness is 
negative by nature and the electromagnetic forces have a strong nonlinearity. Therefore magnetic 
bearing systems are generally controlled by PID type controller tuned based on trial and error 
without the mathematical model. However it takes much time and much labors to take the 
tuning of PID controller. So, a robust control is eagerly waited for in this field. 

In this paper, the sliding mode control[l-2], is a typical method of nonlinear adaptive control 
and robust control, is applied to magnetic bearing system. It has its roots in relay[4] and bang-
bang control theory. Sliding mode control is a high speed switching feedback control, for 
example, the gains in each feedback path switch between two values according to some rules. 
This control law drive system's state trajectory to a user-chosen surface in the state space called 
the sliding surface for all subsequent time. The sliding surface is called switching surface in 
another name because if the state trajectory is above the surface a control path has one gain and a 
different gain if the trajectory drops below the surface. From this control, system is restricted to 
this surface and is stabilized. This method is a very robust for parameter change, modelling 
error and disturbance etc. 

The sliding mode control method is compared with PID control method for the flexible rotor 
supported by magnetic bearings in two cases of the lift off and the rotation is both the simulation 
and experiments. 

2. M O D E L I N G AND C O N T R O L S T R A T E G Y 
2.1 Basic Equation This paper deals with a radial-type magnetic bearing system. 

Figure 1 shows four assembled electromagnetics. The whole system used for experiments is 
shown in Fig.2 where the flexible rotor shown is assumed rigid. We make the following 
assumptions: 
(1) The attractive forces are proportional to the square of the coil current. 
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(2) Both electromagnetic bearings have the same characteristics. 
(3) The induced voltages of electromagnets are ignored. 
(4) The coil inductances are independent of frequency and gap length and are constant. 
(5) This system is uncoupled between the x and y directions. 
(6) Only small vibrations near equilibrium are considered. 
(7) The rotor mass is concentrated at the bearing. 

Under these conditions, we obtain the following equation for one electromagnet: 

E=L<IURI W 
dt 

where E is the coil input voltage, L the coil inductance, R the coil registance, and / the coil 
current. The attractive force of an electromagnet can generally be given by 

^fJoAN^l (2) 

H2 

where P is the attractive force, ^ the permeability, A the face area, /V the number of 
winding turns, and H the gap length. From the standpoint of small vibration near equlibrium, 
P, H, and / are given by 

P=po+p,I=io+i,H=ho+h ( 3) 
where p 0 is the stady-state attractive force, i 0 the steady-state current, ho the steady-state gap 
length, p the control attractive force, i the control current, and h the control gap length. 
Using the Taylor series expansion for small values of i and h and assuming / «iQ and p « p0 , 
we can finally get the following attractive control force in linear term: 

The four control attractive forces pi,p2,p3 arep4shown in Fig.l. The resultant forces of 

the horizontal control attractive force and the vertical control attractive force are, respectively, 

mX=Pl-P3 

my=(Ps+P2)-(po+P4)-mg ( 5 ) 

where m is the half-mass of the rigid rotor and g the acceleration of gravity. Assuming that 
control current to coils are i y = - i i and i^=- i2 , we have the following expressions considering 
Eq.(4): 

mjt='Apo<%'io) 

my=-2 l̂̂ )i+2(?f-+??-)y ( 6 ) 

where the control gap length h is replaced by the displacement x and y from equilibrium; 
mQ+p0is replaced by the steady-state attractive forceps and the steady-state current i s . 

The phase lead circuit is used to compensate for the time constant of electromagents in order 
to maintain control at higher frequencies. We can obtain the following equation concerning a 
phase lead circuit: 

d v _ El Ri+Rz (7) 
dt CRi €RiR2 

where the new parameter v is the phase lead voltage and R^R 7 ,C are parameters of the phase 

lead circuit. £;1 is the input voltage to the phase lead circuit. The integral values of 
displacements are used as control variables. The formulas are 
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a = xdt, p = ydt 

Replacing E with v in Eq.(l) since E=E X -V. We get 

Using Eqs.(5)~(9), we can write the state equation as next section. 

(8) 

(9) 

2.2 State Equation The state equation for rigid rotor supported by magnetic bearings 
is written as follows[3]: 

X = A H X + b u x (10) 
Y = A v Y + b u y (11) 

where A H is the horizontal system matrix and/I v is the vertical system matrix. These are 
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The state vectors^ and Y, the control vector b, and the control inputs u x and wv are given by 

X = [ x x a ^ vx \ . 

Y=[y y P iy Vyf 

b = [0 0 0 ± - I - f 

(14) 

(15) 

(16) 

(17) 
L CRl 

ux = Elx > u y - Ely 

where T means transpose. The output feedback control system of PID type is given by 
u x = - F x X , u y = - F y Y (18) 

where 
Ex = [fix fix fix Ux fsx] 
Fy = [fly f2y hy /4y fsy] 

(19) 
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We assume the following expression as , fs = 0. 
2.3 Sliding Mode Control The sliding mode control based on Variable Structure 

System (VSS) theory is the concept that the state of the system is restricted on the sliding 
surface by switching the control structure at both side on the super plane in the state space and 
the closed loop system is stabilized by the state restricted is sliding to the equilibrium on the 
switching surface. On the actual control system design in this paper, we assume the rotor 
system is rigid rotor as sections 2.1 and 2.2 and design the controller for the fifth order state 
equation. The constructed control system based on the sliding mode control theory has the 
feature of an on-off control in addition to conventional linear control. We tried many cases 
about switching widths of linear feedback gains. The best switching widths were almost 10 
percent of each linear feedback gain. 

The sliding mode control is a method which each feedback gain is switched at the rate of the 
specified percentage depending on each state of each state variable. Therefore, we have to 
design the switching surface on the state space at first. The switching surface is designed using 
various methods, for example, pole placement. 

The switching surface is defined as follows: 
a= SX= [Si S2 S3 S4 s s ]X (20) 

The existence of a sliding mode implies the following state trajectory. 
a= 0 (21) 
a= 0 (22) 

The so-called equivalent control input is solved using Eq.(22) as follows: 
o= SX 

= S(AX + Bu) 
= 0 

.-. U e q = - (SB)- lSAX (23) 
The parameters of the switching surface are obtained by means of pole placement method. 

Let us consider the existence of the sliding state. We assume the Lyapunov function as 
V(o) = 0.5 a 2 (24) 

Differentiating this function in respect of time, we have 
V = o o (25) 

The function V is positive definite for all of state space. If dVldt is negative definite, the 
system is secured from the existence and the reachability of sliding mode. Therefore the 
switching rule of the feedback gains should be selected such that Eq.(25) becomes negative 
definite any time and any states. Using Eqs.(20) and (25) and taking into account of 
u = - K X , K = [ k i 3̂ k^ ks ],we get the final expression. 

V= oo 
= oSX 
= o S ( A X + Bu) (26) 
= o S A X - o S B K X 
= S A o X - S B K o X < 0 

Using Eq.(26), the switching feedback gains are 

k , = k i + > ( S B ) - 1 (SA ), CTX, > 0 

3. SIMULATION 
3.1 Simulations in the Case of Output Feedback The simulations of the 
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sliding mode control are compared with PID control on the same condition of experiments. 
From Eq.(23), we have U e q - - (SB)" ^SAX = -FX. Therfore,the switching parameters are 
decided in the vertical direction as follows: 

Sl=f2,S5=(f5- ^ ) /(«5- ) 
Di 01(24 

S2=(f4-5^)1^2, S3=h-S2ai, S4=(l-S5b2)/bi 

where 
ai=2/m(ps/h0+p0/h0),a2= - 2/m(ps/is+p0/i0), 
03= - R/L,a4= - 1/L, a5= - (R1+R2)/CRiR2, 

bl=llL,b2=l/CRi 

The feedback gains used for experiments are /!=1.0400, /2=250,/3=11500, so the switching 
parameters become Si=250, 52=-957,53=11530,54=0.853,S5=-0.0006 in this case. 

Figure 3 shows the impulse responses. The maximum displacement and the maximum 
control input in the case of the sliding mode control is smaller than the PID control. It is found 
that the sliding mode control is more effective for large displacements and the sliding mode is 
realized after 0.03 second from the switching function in Fig.3. Figure 4 shows the robustness 
concerning system parameter deviations. Figure 4 shows the responses before and after change 
when the 10 percent mass of the total rotor mass is added at levitation. The sliding mode control 
is superior to PID control for parameter deviations. 

3.2 Simulations in the Case of State Feedback Exactly speaking, the 
sliding mode control with strong robustness should be realized by a full state feedback without 
observer on the point of view from theory. However it is difficult to carry out a full state 
feedback, therefore, the sate feedback using minimal order observer is applied to the sliding 
mode control in this section. We call this state feedback the linear control after this. 

Figure 5 shows the step responses at lift off. The responses are improved and the settling 
time becomes short in the case of the sliding mode control. Also we can see switching control 
input in Fig.5. This typical phenomena are the reason why the sliding mode control can be 
applied to nonlinear control or adaptive control. 

Even the steady-state current is changed to twice, the system is still stable in the case of the 
sliding mode control as shown in Fig.6. However the system becomes immediately unstable in 
PID control. Figure 7 shows the sensitivity characteristics in regard to unbalance forces as 
disturbance. From Fig.5, Fig.6 and Fig.7, the sliding mode control with state feedback is 
more excellent than the case with output feedback. 

4. TEST R I G A N D E X P E R I M E N T A L RESULTS The block diagram of the 
schematic test rig is shown in Fig.2. The rotor mass is 3.6kg and the shaft length is about bn. 
The shaft diameter is 20mm and has two disks which each mass is 0.55A:g. The first and 
second bending critical speeds of this shaft system is about 55 Hz and 260 Hz. The 
displacements of the shaft are measured by the optical sensors close to magnetic bearings. 
These signals go to the digital signal processor (DSP) which is TMS320C25 with eight 
channels A/D and D/A converter. The rotor is supported in the radial direction by two active 
magnetic bearings as shown in Fig.6 and is connected with the flexible coupling in the axial 
direction. Four sliding mode controllers are independently designed each other, AMB#1 
horizontal and vertical, AMBU2 horizontal and vertical. The switching rate of feedback gains is 
about 10 percent of linear gains in experiments and the switching time is 0.002 second. The 
sampling frequency is 4kHz in this experiments. The air gap between the electromagnet and the 
rotor disk is 1mm and the rotor contacts with the touch down bearings when the shaft 
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displacements exceed 0.7mm. 
In the experimental case of PID control, the feedback gains of the PID controller and 

parameters of the phase compensator are optimally tuned by manual with cut and try. It is not 
easy to compare the PID control with the sliding mode control on the same condition. The 
simulations of the PID control and the sliding mode control in chapter 3 were computed by 
using actual parameters used for experiments.' 

Figure 8 shows the impulse responses without rotation in the case of the same condition of 
Fig.3. The large amplitude is suppressed in the case of the sliding mode control. 

Figure 9 indicates the experimental robust stability in the case when ten percent of the rotor 
mass is changed. Though the large vibration of the amplitude 20\im arises in the case of PID 
control as shown in Fig.9, the vibrations in the case of the sliding mode control is smaller than 
it. Figure 10 shows the unbalance responses at the location of AMB#\ and AMB#2. The 
violent vibration which means the contact with touch down bearings is recognized in the case of 
PID control because of unbalanced rotor at the location ofAMB# \ in the horizontal direction, 
however the small vibrations in the case of the sliding mode control is observed compared with 
PID control. On the first bending critical speed about 55 Hz, the bending vibration was 
reduced to small vibration in the case of the sliding mode control. Namely, this means that 
sliding mode control has a stromg robustness. It was impossible to increase the rotating speed 
over 76Hz in PID control. By contrast, It was possible to increase the speed up to 160Hz 
(about lOOOOrpm) within the maximum displacement 0.2mm because of small vibrations in 
the case of the sliding mode control. It is clear that the sliding mode control is very powerful 
for large vibration from simulations and experiments. In the case of linear control, the 
saturation in the power amplifier etc. is fatal result because the closed loop system becomes 
unstable. However, the saturation is not fatal in the case of the sliding mode control as shown in 
Fig.4 and Fig.lO. 

5. CONCLUSIONS The sliding mode control replacing with PID control in this paper is 
applied to active magnetic bearings using DSP control. From the simulations and the 
experiments, we have verified that the sliding mode control has a strong robustness for 
parameter deviations and an unbalance cancellation effect. Also it has become clear that the 
sliding mode control with robustness is superior to PID control for magnetic bearing control 
systems. 
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