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ABSTRACT 

This paper presents a robust centralized control scheme for a magnetic 

bearing system which supports a r i g i d rotor at both shaft ends i n the radial 

direction. The negative s t i f f n e s s element and the inductive force assocciated 

with bearing magnetic f i e l d are considered in the dynamic model of the system. 

For t h i s model, the c o n t r o l l a b i l i t y and observability are examined, and then a 

robust control theory i s applied to design two types of multi-input muti-output 

servocontrpllers. A general servocompensator i s imbedded i n the f i r s t one and a 

centralized PID co n t r o l l e r i s suggested as a second one. By simulation study, 

the performance of two types of servocontrollers are compared i n the aspects of 

the disturbance rejection, reference tracking and the robustness l i m i t . 

1. INTRODUCTION 

The advantages of magnetic bearing application to support a rotor system are 

i t s contactless nature and active c o n t r o l l a b i l i t y . However, the active magnetic 

bearings are inherently unstable due to the negative s t i f f n e s s elements caused 

by the electromagnetic f i e l d . Also, the degree of i n s t a b i l i t y of the system 

increases according to the gyroscopic effect and the inductive forces generated 

i n the magnetic bearings as the spinning rate of the rotor gets higher. 

Another problem to deal with i s the nonlinear characteristics of the 

electromagnetic f i e l d s . This nonlinearity results i n complicated dynamic model 

and inevitable modeling error. Also there exist unpredictable disturbances due 

to mass unbalances of the rotor. 

Hence, an asymptotically stable and robust cross feedback control scheme i s 

required for magnetic bearing supported rotor systems. Recently several 

centralized MIMO co n t r o l l e r designs have been developed by using the 

state-space model approaches [1,2]. These control schemes can easily 

accommodate the cross feedback capability through the u t i l i z a t i o n of the f u l l -
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state feedback elements with observers. However, one of main claims agaist 
these approaches is that the robustness is not guaranteed in the entire 
operating range over which the modeling error and unpredictable disturbances 
may occur [3]. 

In this paper, the robust control theory suggested by Davison [4] is applied 
to design a centralized controller for a ri g i d rotor supported by magnetic 
bearings. A general servocompensator is imbedded into the MIMO control scheme 
for the perfect rejection and tracking of the sinusoidal type disturbances and 
reference signals, respectively. Also, a centralized PID controller is 
suggested as a simpler version of the previous one. 

The dynamic model of the r i g i d rotor system in magnetic bearings is 
summarized in Section 2. Section 3 briefly shows the implementation of the 
control schemes, and the simulation results are presented in Section 4, where 
the performance comparison between two types of controllers and the robustness 
l i m i t against the change of rotor dynamics are described. 

2. MODELLING OF A ROTOR SYSTEM IN MAGNETIC BEARINGS 

The schematic model of a rigid rotor system supported by magnetic bearings 
is shown in Fig.l. The inertia is at a distance Li and Lz from left and right 
side support respectively. The spin axis of the rotor is taken to be x-axis 
with clockwise spin being a positive angular rotation speed ux. 

The inertia of the rotor about the x-axis is Ja and that about y and z-axis 
is Jr. I t is assumed in the analysis that the pitch and yaw angles are 
sufficiently small and that the values of Ja and Jr are independent of rotor 
motion. The mass of the rotor is M and i t is assumed that the shaft is 
massless. 
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(a) Side View from z-Axis (b) Side View from y-Axis 

Fig.l A Rigid Rotor Model Supported by Magnetic Bearings 
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From F i g . l , the equations for the translational motion of the rotor are 

( Fy l + Kyi y i - Fezl ) + ( Fy2 + Ky2 VZ - Foz2 ) + Fdy = M yr ( l ) 

( F z l + Kzl Zi + Feyl ) + ( F Z 2 + Kz2 Z2 + Fey2 ) + Fdz = M Zr (2) 

where the Fi and Fei (i=yi, yz. z i , zz) are the magnetic force inputs and the 
inductive forces, respectively. Fei is described as 

Fei = Kei Wx i • (3) 

where Kei are the inductive force coefficients and Ux is the spinning speed of 
the rotor shaft. Fdy, Fdz are the disturbances to the rotor mass and Ki are the 
magnetic bearing stiffnesses at each set of poles. 

Also the equations for the rotational motion are 

Lz(F yz+Ky2y2-Fezz) - Li ( F y l + . K y i y i - F e z l ) = Jr0z " JaUx0y (4) 

-Lz(FzZ +Kz2Z2 +Feyz) + Ll(Fz1+Kz1Zl+Fey1) = J r ^ y + JaUx^z (5) 

where 6y is the yaw angle about y-axis and Oz is the pitch angle about z-axis 
and from geometry 

yi = yr - Lie z ; yz = yr + Lz0z (6) 
zi = z r + LiGy : zz = z r - Lz0y (7) 

Now following assumptions are made without loss of generality: 

Kezl = K e y i = Ke1 I Kez2 = KeyZ = KeZ (8) 
Kyi = Kzi = Kmi : Kyz = Kzz = Kmz (9) 

then, with following definitions 

p = Ja/Jr: U t l 2 = Kml/M: WtZ 2 = Km2/M; «al = Kel/Ml WaZ = KeZ/M (10) 

L = Li • Lz: a = L i / L (11) 

U r l 2 = LZKml/Jr! WrZ2 = L 2Km2/Jr: Ub1 = L 2 K e l / J r : UbZ = L 2 K e 2 / J r (12) 

the system equations of the ri g i d rotor supported by magnetic bearings can be 
summarized into a state-space model : 

x = A x + B u + Eu (13) 
y = C x (14) 

where the matrices A, B, E and C are shown in Fig.2. Here, x is the state 
variable vector defined as 

{ X } T = { y r , yd, Zr, Zd, y r , yd, Zr, Zd } (15) 

where ya = L 0z and zd = L Oy. y i s the r e g u l a t e d output d e f i n e d as 

(16) 
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Fig.2 System Matrices for a Rigid Rotor System in Magnetic Bearings 
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{ y } T = { y i . y i . z i . 22 } (16) 

and u i s the plant inputs such as 

{ U }T = { Fyl, Fzl, Fy2, Fz2 } (17) 

u i s the disturbances to the rotor mass defined as 

{ u } T = { Fdy, Fdz } (18) 

The c o n t r o l l a b i l i t y matrix can be given by 

and 

Co = [ B, AB ] 

det[Co] = a*/Jr4M4 

(19) 

(20) 

Thus, det[Co] i s positive, and the plant is controllable for any choice of 

plant parameters except for the case a = 0, which means that the plant requires 

two separate bearings to be controllable. 

The observability matrix can be given by 

Ob = 
C 
CA (21) 

and det[0b] = 1 (22) 

Thus, the plant i s always observable. 

3. STRUCTURE OF ROBUST CENTRALIZED CONTROLLER 

The general servocompensator [5] which i s to be used i n t h i s application i s 

sp e c i f i c a l l y defined as follows with input e e R4 a n cl output 7? e R12 

where 

n = C* n + B* e: e = yref - y 

C* = blockdiag (Cp,Cp,Cp,Cp) 

B* = blockdiag (Bp,Bp,Bp,Bp) 

(23) 

(24) 

(25) 

and Cp and Bp are defined as 

Cp = 
0 1 0 
0 0 1 

0 -ux 2 0 

and Bp = 
0 
0 (26) 

The servocompensator i s then combined with the plant (13) and (14) to y i e l d 
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the fo l l owing system: 

X A O" X 

n -BSC C* n 

y C 0 X 

V 0 I n _ 

B 
u + 

E 0 u 

0 0 B* y r e f 
(27) 

(28) 

Then any robust controller for (13) and (14) must have the following 
structure [4,5] : 

u = Ko x + K JJ (29) 

where x is the output of an observer of order n s 8 with input y and u. 
Ko, K can be found by using pole assignment method (or linear quadratic 

optimal control theory) to stabilize and give desired transient behavior for 
the system (27) and (28) i f and only i f the following "plant conditions" a l l 
hold: 

(1) (C.A.B) has no unstable fixed modes [6]. 
(2) The transmission zeros of (C,A,B,0) do not coincide with A. = 0, ±Uxi. 
(3) The outputs y are physically measurable. 
The general servocompensator defined in (23) can be reduced to include only 

the integrator terms as follows : 

7? = e : e = yref - y (30) 

where Tl e R*, then a MIMO centralized PID type control scheme is obtained. 

4. SPECIFIC DESIGN EXAMPLES 

In this section, specific examples of robust centralized controllers are 
given for a r i g i d rotor in magnetic bearings. The rotor parameters are same as 
those in the work of Fermental et al. [7] : 

M = 100 [kg], Li = Lz = 1 [m], Jr = Ja = 1 [kgm2] (31) 

and the magnetic bearing stiffnesses and inductive force coefficients are 
assumed to be 

Km = Kmi = Km2 = 8 x 10^ [N/m] (32) 
Ke s Kei = Kez = 500 [Ns/m] (33) 

Then 
p = 1; wti = wtz = 283 [ r / s ] : wai = Waz = 5 [ r / s ] ; 

wri = Wrz = 2830 [ r / s ] : wbi = wbz = 500 [r/s] 

(34) 
(35) 

The "plant conditions" in Section 3 should be satisfied for a robust 
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controller to exist. I t is known [6] that (C.A.B) has no fixed modes i f and 
only i f (C,A,B) is controllable and observable. The eight transmission zeros of 
the plant are located very far from the origin with each of three zeros is 
along the positive and negative imaginary axis, respectively, and the other two 
zeros are along the each direction of the real axis. So, these zeros do not 
coincide with X = 0, ± Uxi. Since the regulated outputs y are measurable, the 
"plant conditions" are satisfied. 

The locus of the open-loop eigenvalues of system matrix A are shown in 
Fig.3. The open-loop system is highly unstable due to the negative stiffness 
of magnetic bearings. The inner boundary to the origin and the 'x' are the 
locus when the Ux increases from 0 to 6000 r/s with a = 0.5. The open-loop 
poles are at s = ±400, and s = ±2000 at wx = 0 r/s, which correspond to the 
resonance frequencies of 

Uoi = [ 2 Km/M and Uo2 = [ L 2 Km / 2 Jr ] 1 / 2 (36) 

In general, the resonance frequencies at Wx = 0 r/s and a = ai are 

uo = [ u s

2/2 ± 0.5 { (Js* - 4 (Km/M) (L2Km/Jr) } 1 / 2 ] 1 / 2 

where Us2 = 2 Km/M + L2Km/Jr [ (1 "Cti ) 2 +ai 2 ] 

(37) 

(38) 

The outer boundary to the origin and the 'o' are the locus when a = 1.0. The 
open-loop poles start from the real axis (at s = ±281 and ±2830) and breaks out 
into the direction to the imaginary axis as Ux increases. . 

The closed-loop poles are assigned such that the damping coefficient should 
be 0.707 and that resultant natural frequencies do not coincide with the 
open-loop resonance frequencies : 
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Fig.3 Locus of Open-loop Poles of System Matrix A 
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Pi .2 ,3 ,4 = -140: Ps.e.T.a = -100±100j: Pg,10,11,12 = -3000 (39) 

for both of the general servocompensator and the centralized PID control 
schemes. For the additional poles for the general servocompensator, followings 
are assigned : 

Pl3.14.15.16 = -1000: Pl7.18.19.20 = -1000±300j (40) 

The simulation result for testing disturbance rejection is shown in Fig.4. 
In this case, a sinusoidal type disturbance Fdy = 1000 sin(wxt) [N] is applied 
to the rotor mass, and the reference signals are yiraf = 0.0002 [m] and yzref = 
-0.0002 [m] with Ox = 400 [ r / s ] . In Fig.4 (a), i t is verified that a perfect 
regulation can be achieved by using the general servocompensator. In case of 
centralized PID controller, in Fig.4 (c), a steady-state error cannot be 
avoided. In Fig.4 (b) and (d), the magnitudes of the control inputs of the two 
control schemes are almost same with each other at steady-state. 

Fig.5 shows the results of the sinusoidal reference tracking to make the 
geometrical axis of the rotor whirl around the bearing center axis with each 
shaft ends at 180° phase shift. The disturbance Fdy = -1000 [N] is exerted 
along the yi-axis. The f i r s t one yields a perfect tracking, whereas the second 
one produces an e l l i p t i c a l motion. The rotating direction is also reversed in 
case of second one because of the phase lag of the yi-axis caused by the 
disturbance. 
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In Fig.6, the robustness of two types of control schemes is compared. The 
reference and disturbance signals are same as in Fig.4. The regulating function 
is tested for the whole range of ux with the control gains maintained as a 
same set as those obtained at Ux = 400 [ r / s ] . Since the characteristics of the 
open-loop system changes as Ux varys [Fig.3], the degree of robustness can be 
verified. I t is very clear that the centralized PID controller shows an 
asymptotical s t a b i l i t y up to the range of 6000 r/s and more. However, the 
bandwidth of the general servocompensator gets decreased as Ux increases. The 
allowable plant model variations are limited in case of general 
servocompensator. 

5. CONCLUSION 

A robust control theory is applied to obtain two types of centralized 
control schemes for a r i g i d rotor system supported by magnetic bearings. The 
negative stiffness and inductive force effect are included in the plant model 
and no local feedback action is assumed. The control scheme which ut i l i z e s a 
general servocompensator reveals perfect tracking and regulation for the 
sinusoidal reference and disturbance signals, whereas the robustness is 
limited. The centralized PID control scheme maintains the asymptotical 
s t a b i l i t y up to the spinning speed of 6000 r/s, hence reveals good robustness. 
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