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ABSTRACT 

Magnetic bearings are currently being explored as viable alternatives to existing 
hydrodynamic or rolling element support devices for high speed rotating machinery in 
various applications. Incorporation of active magnetic bearings into rotor systems can 
lead to enhanced stability characteristics by proper choice of the feedback control law. 
Traditionally low-order PD type controllers or high-order LQR/LQG based 
controllers have been used for such bearings. In this paper, a method of designing 
low—order decentralized magnetic bearing controllers for high-order plants is proposed. 
The controller is represented by a minimum set of design parameters (numerator and 
denominator coefficients of the transfer functions of the controller), and the optimum 
controller parameters are obtained by means of a numerical search in the parameter 
space. The various design specifications for such a design could be insurance of 
stability, boundedness of design parameters within upper and lower limits, placement 
of closed-loop eigenvalues within an acceptable region in the complex plane, and 
avoidance of closed—loop eigenfrequendes from an envelope around the rotor operating 
speed. Satisfaction of the multiple specifications is attempted by solving the problem 
as a sequence of constrained minimization problems, with more and more constraints 
being introduced in each subsequent stage. The design requirements specified in terms 
of the closed—loop characteristics of the system are achieved through a step by step 
process. The algorithm utilizes the method of feasible directions to solve the nonlinear 
constrained minimization problem at each stage. This methodology emphasizes the 
designer's interaction with the algorithm to generate acceptable controller designs by 
changing various specifications and altering the initial guesses interactively. A 
graphical interface has been developed to facilitate design interaction by the user. 

INTRODUCTION 
Magnetic bearings are being used in high speed rotor systems as an attractive and 

viable alternative to currently existing hydrodynamic or rolling element support 
devices in various applications. From merely the control standpoint, the ability to 
alter the magnetic bearing transfer function can lead to enhanced closed—loop stability 
characteristics and achievement of various closed-loop design criteria. Active 
magnetic bearing systems offer the designer enormous flexibility to choose the nature 
of the feedback control law and the parameters that govern the law. However, this 
flexibility cannot be put to effective use due to the limited availability of practical and 
implementable feedback design methods to exploit the range of available bearing 
parameters for rotor systems. 
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Research in control system design and optimization applied to rotor systems has 
followed a number of different paths depending on the methodology and the final 
objective. Eigenvalue placement and eigenstructure assignment has been used as one 
control strategy. The problems associated with such a method are i) choice of a 
desirable eigenstructure is not obvious, ii) inability to achieve such a structure by 
output feedback, and iii) lack of a control magnitude penalty. 

Controller design based on state space methods minimizing a quadratic cost 
function to obtain an optimal control law is another alternative approach [1,2 . Such 
designs, classified under the title of Linear Quadratic Regulator/Gaussian (LQR/LQG) 
problem, remedy some of the problems faced by eigenstructure assignment. Moreover, 
the guarantee of a closed—loop unique and stabilizing solution of this problem via the 
solution of the Ricatti equation is an attractive proposition. However, the main 
disadvantages of this method are i) the resulting controller requires access to all the 
rotor states, or to a state-observer, ii) the controller order is the same as the rotor 
model, iii) actual design specifications must be translated into a choice of weighting 
matrices, iv) LQR based controller generally exhibits poor robustness, and v) the 
scalar quadratic cost function may be inadequate to represent certain design objectives. 

One approach to overcome some of these problems has been the development of 
decentralized fixed-order (typically low-order) controllers by prespecifying the 
feedback controller structure and minimizing a scalar quadratic cost function of the 
weighted output states and the weighted control inputs. The design of such 
controllers, often called output feedback controllers, involves a numerical parameter 
optimization of the controller structure, since a closed—loop solution to the problem is 
not available [3—6]. The main problems associated with such a method include i) 
requirement of an initially feasible starting guess, ii) inadequacy of the scaler quadratic 
cost function to represent different design objectives, and iii) handling of multiple local 
optima encountered during optimization. 

This paper extends the concept of decentralized low-order controllers for the 
nominal higher order model of the rotor, with design objectives to be minimized that 
reflect practical needs of the rotor system designer. Numerical optimization methods 
have been used to determine the controller parameters, starting from an initial guess. 
Emphasis has been put on issues involving bad initial guesses resulting in 
unfeasible/unacceptable local maxima. A design example has also been included to 
demonstrate the methodology. 

DESIGN VIA PARAMETER OPTIMIZATION 

The basic objective of the methodology is to develop a design procedure for 
decentralized low-order controller for rotor systems to achieve certain specifications 
regarding the stability and performance of the closed-loop system. To do so, we need 
to briefly describe the concept of decentralized control. Decentralized, or local control 
is defined as a control mechanism based only on local state information, and can be 
regarded as a particular form of output feedback where certain elements of the 
feedback matrix are constrained to be zero [7—11]. A low-order decentralized 
controller for rotor system would consist of a bearing with simple dynamics, where the 
force at the bearing is dependent only on the measurement at the sensor location, and 
the relationship between the bearing force and the local measurement is a low-order 
transfer function. One of the simplest examples of such a scheme is selecting the 
"stiffness" and "damping" coefficients of a Proportional Derivative (PD) controller in 
order to control rotor response and stability. 

The rotor system or the plant is represented by a second-order matrix 
differential equation, which is a fair approximation of the continuous system for 
modeling purposes provided the number of degrees of freedom chosen is large enough. 
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This can be readily converted to a first-order state-space form 
x = Ax + Bu (1) 
y = Cx 
where x = states of the rotor 

u = input force vector for the rotor 
and y = output vector for the rotor 

For plants with high system order, a model reduction may be deemed necessary to 
improve the computational efficiency in the subsequent numerical optimization, and 
also to reflect the facts that the finite-element model is unable to correctly represent 
the high frequency dynamic behavior of the rotor, and that the bandwidth of the 
controller is limited by practical considerations. A reduced order model can be 
constructed by modal truncation method, dynamic condensation, or internal balancing. 

The magnetic bearings are represented as low-order dynamic systems, with 
state-space description 

*c - Vc + V (2) 
» = C c x c + V 
where x = internal states of the controller 

y = input vector for the controller 
and u = output vector for the controller 

In general, the order of the controller is chosen a priori to the design process. The 
state-space description of the closed-loop system is given as 

A + BD C BD̂  c c 
B D A 

c c 

x (3) 

A 0 

0 0 

B 0 

0 I B. 

C 0 

0 I 

x 

x. 

or, x = [A + B K C] x = AC L x 

The problem has been converted to a static output feedback form, and the 
objective is to find the controller matrix K to satisfy the specified design requirements. 
To minimize the number of free parameters, it is necessary to convert {Ac, Be, Cc, Dc} 
to some canonical form. For this analysis, we have chosen the controller canonical 
form, where the controller matrices are represented as 

0 1 0 
0 0 1 
• • • • • • • • • 

0 0 0 

-to -A -W' 

0 

0 

-A n-1 

0 

0 

0 

h 
(4) 
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Cc = [ "0 "1 "2 «n-l ^ Dc = S0 

and the corresponding transfer function is 

6(8) = C c ( s I - . A c ) - i B c + D (5) 

1 S11-1 + oc 0S
n- 2 + + oc^ + Kf. 

n—1 n—z l U + S0 

The problem of finding the controller matrix K is now translated into finding the 
vector of design parameters 

z = [«n-l V-2 «1 «b ^n-1 ^n-2-" ^1 ^ 
for each controller, which satisfies the design criteria. The controller canonical form 
may not be best suited for representing the transfer function since it may lead to 
numerical ill conditioning on the augmented system matrix ACL. However, it has been 
chosen for the simplicity of representation. Any other canonical form could be used 
alternatively. 

DESIGN SPECIFICATIONS 

Specification of the objective function for minimization is one of the main issues 
of controller design for rotor systems. Selection of an appropriate objective function 
based on the closed—loop eigenvalues is a primary aspect of this paper. The general 
trend for control system designs based on LQR/LQG has been the minimization of the 
quadratic performance measure based on weighted state and control cost. However, 
such an objective function does not allow a direct specification based on the closed loop 
eigenvalues. 

To overcome this limitation, we present performance measures and constraints 
defined in terms of the eigensolution of the closed-loop system. The performance 
index should ideally measure a sum of the stability margins of the individual 
eigenvalues, among other things. This leads to the formulation of a nonlinear 
constrained optimization problem where the feedback parameters are obtained by a 
vector search over the parameter space. 

For rotor systems, the stability margin is often measured in terms of the 
logarithmic decrement of the damped eigenvalues defined as 6i = -27rpi/a;i where pi, 
Ui are the real and imaginary parts of the i t h damped mode. For most designs of rotor 
systems, it may suffice to have a minimum log decrement 6, for modes below a certain 

lower cut-off frequency a>L, and another value of log decrement 6̂  for modes above 

another upper cut-off frequency u^, and a minimum log decrement S^Ui) for modes in 

between. Also, it may be prescribed that no damped eigenvalue can lie within a 
specified envelope around the operating speed of the rotor (typically, 10% above and 
below the operating speed). These requirements translate into moving the closed—loop 
eigenvalues into an acceptable region of the complex plane. Attention is focused upon 
those eigenvalues that are outside the acceptable region and control effort is designed 
trying to bring them into this region [12]. From an optimization point of view, the 
objective can be formulated as the minimization of an acceptability function A, which 
is only required to be continuous and differentiable (almost everywhere) and have a 
value zero in the acceptable region and positive everywhere else. 
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subject to the constraints 
min A(z) (6) 

gj(*) < o 
where z = vector of design parameters 
and g.(z) = jth constraint 

J 

The acceptability function is not a performance index. It merely indicates if a 
solution is acceptable or not, and can be chosen at will by the designer to facilitate the 
optimization. Controller design will proceed based on a numerical search in the design 
parameter space, and a reduction in the value of A will occur at every iteration until a 
local minimum of A is reached. Thus, unless this occurs first, A will be eventually 
reduced to zero, yielding an acceptable solution to the problem. Convergence to a local 
non-zero minimum of A would call for restarting the search from a new initial guess, 
relaxing the constraints, or even a change of the acceptability function to get out of the 
local minimum. Repeated failure to reduce A to zero will indicate the absence of an 
acceptable solution for the designer specified values. 

The design problem requires the satisfaction of a set of specifications. Often, 
finding an acceptable solution considering all the specifications simultaneously as 
objective or constraints may become too costly from a computational point of view. 
This led to the idea of solving the design problem as a sequence of constrained 
minimization phases [13]. The order in which these phases occur in the sequence 
depend on the designer, though the 'harder' or more important constraints are put in 
as the initial phases. In our case, the optimization proceeds in four phases, with each 
phase consisting of a constrained (or unconstrained) minimization problem, and the 
objective function is converted into a constraint as it moves into the subsequent phase. 

Phase I — Satisfaction of Stability Requirements 

The optimization problem is 

mm E max [0, p.(z) 
i=l 1 

(7) 

subject to no constraints 
where p i(z) = iZe A i(z) and A i(z) = ith closed-loop eigenvalue 

Phase II — Satisfaction of Lower and Upper Bounds on the Design Parameters 

The optimization problem is 

mm 

subject to p^(z) < 0 
where 
and 

.^max [0, ( s ^ - . j ) , (Zj - z j u p ) ] 

i=l,...,m Stability constraints 

(8) 

z. = jth element of the design vector z 
zjlow' zjup = lower and upper bounds on z. 

J 
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Phase III — Satisfaction of Logarithmic Decrement Requirements 

The optimization problem is 

nn • j ma* [0, ( { i s p e c - (9) 

subject to pi(z) < 0 

where 
and 

jlow - j - jup 

i = l , . . . ,m Stability constraints 
j = l , . . . D e s i g n parameter constraints 

tf.(z) = logarithmic decrement for the i t h eigenvalue 
& = specified logarithmic decrement value for the i t h eigenvalue 
ISpcC 

Phase IV - Satisfaction of Operating Speed Requirements 
The optimization problem is 

min ^ min [(«un - w.), - «xLn)] (10) 

subject to Pj(z) < 0 
Zn < Z- < Z 

jlow - j - up 
A(z) > 6. V ' - ispec 

i = l , . . . ,m Stability constraints 
j = l , . . . ,1 Design parameter constraints 
i = l , . . . ,m Logarithmic decrement constraints 

Constrained numerical search schemes can be used to minimize the acceptability 
function within each stage. Sequential unconstrained minimization techniques 
(SUMT) using penalty functions, the method of feasible directions, or the generalized 
reduced gradient method may be used [14, 15]. The method of feasible directions has 
been adopted here as the numerical search strategy, which starts from an initial guess 
and proceeds by iteratively searching along the feasible directions. If no constraints 
are violated, unconstrained methods like conjugate gradient (Fletcher—Reeves), 
variable metric (Davidson—Fletcher—Powell, Broyden—Fletcher—Goldfarb—Shanno), or 
nongradient (Powell) may be employed within the feasible directions method. The 
objective and the constraint functions are evaluated at each iteration and within the 
unidimensional line search for finding new estimates of the controller parameters, while 
the gradient information for the objective function and the active constraints is 
calculated at the end of each iteration. 

APPLICATION TO ROTOR SYSTEMS 

The rotor system chosen to illustrate the design methodology is a uniform 
symmetric beam 50 inches in length, and 4 inches in diameter. The rotor has been 
modeled by 11 lumped mass stations, and the order of the system is 44 (each mass 
station or node is associated with four degrees of freedom, two translational and two 
rotational). Assuming negligible rotationad inertia and gyroscopic effects of the shaft, 
the rotational degrees of freedom can be condensed out by Guyan reduction, and the 
system order can be reduced by four to 11 by virtue of the symmetry in the horizontal 
and vertical coordinate directions. The rotor is supported at the two ends by magnetic 
bearings represented as two low-order decentralized controllers (Fig. 1). For this 
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example case, the controllers are implemented as fourth-order strictly proper transfer 
functions, with the velocity and displacement at the two ends as the outputs and the 
control forces as the inputs. The coefficients of the transfer function for the initial 
guess are chosen randomly and the following example represents one successful case 
from these initial random guesses. The initial controller transfer function is 

G 0 ^ = 7.208x1012 s3 + 2.6618x10^ ŝ  + 2.738x10^ s + 8.607 x 102* ^ 
1 s H 1.236x106 s3 + 3.930x1011 s2 + 6.672x10 i « s+ 2.937x1019 

= 7.208x1012 (s + 2.229x10 * Hs + 7319 + i 7.47) (s + 7319 - i7.47) 
(s + 6.104xl05)(s + 6.083xl05)(s + 8854 + i840)(s + 8854 -i840) 

GjS(s) = Gj(s) 

The initial design parameter vector consists of the numerator and denominator 
coefficients of the transfer functions G0(s) and G0(s) 
zo = [7.208x1012 7.208x1012 2.662xl01i7 2.662x1017 2.738x1021 2.738x1021 8.607x1024 

8.607x1024 1.236x106 1.236x106 3.930xl0ii 3.930x1011 6.672x1015 6.672x1015 
2.937x1019 2.937x1019 

The pole-zero locations and the bode plot of the transfer function for this initial guess 
of the design parameters are shown in Fig. 2. The corresponding closed—loop system 
eigenvalues and logarithmic decrements are listed in Table 1. 

The design specifications are laid down as follows: 

I. Stability of the system must be insured. This implies 
Re\i(z)<0 or, pi(z)< 0 

II. Upper and lower bounds on the coefficients of the transfer function have been 
fixed. To limit the bandwidth of the system, the requirements are chosen as 

1 < Zj < 1 x 103° 
III. The logarithmic decrement 6 requirements have been established 

A minimum log dec S. = 2.0 for modes below a lower cut-off frequency 
u). = 800 rad/sec. 
A minimum log dec 6̂  = 0.01 for modes above an upper cut-off frequency 

= 15,000 rad/sec. 
A minimum log dec S^(<J} given by a straight line intetpolation between 
6r and 6„ for modes with frequency wT < u < u)„. 

L U \ J j U 

IV. No operating speed envelope requirements have been requested. 

The design parameter vector is subjected to the constrained optimization 
procedure as described in the previous section. Within the feasible region, a 
conjugate-gradient (Fletcher—Reeves) scheme is adopted, and the optimization is 
terminated after 7 iterations, yielding the final design vector 

z* =. [7.083x1012 7.083x1012 3.122x1017 3.122x1017 5.349x1021 5.349x1021 
2.082x1023 2.082x1023 1.232x106 1.232x108 3.703x1011 3.703x10" 
3.755x1015 3.755x1015 4.204x1019 4.204x1019 

Translated into the transfer function form, the resultant controllers are 
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= 7.083x1012 s3 + 3.122x1017 s2 + 5.349x1021 s + 2.082x1023 
1 8* + 1.232x106 s3 + 3.703x1011 s2 + 3.755x1015 s + 4.204x1019 
= 7.083xl0i2(s+ 39Ks+ 2.202x104 + i l . 639x104)(s+ 2.202x104 - il.639xl04) 

(s + 7.356xl05)(s + 4.864x105) (s + 5046 + i9593)(s + 5046 - i9593) 
6 (̂8) = 6](8) 

It is to be noted that symmetry is retained though it was not imposed explicitly during 
the optimization. The pole-zero locations and the bode plot of the transfer function 
for the resultant decentraUzed controller are shown in Fig. 3. Even though the 
structure of the bode plots remain similar over the dynamic range of the system, some 
loop shaping has occurred in the optimized controller leading to an improved design. 
The static gain shows a decrease, while there is an introduction of additional dynamics 
due to the complex controller poles at 9593 rad/sec. This would have the effect of 
having a frequency dependent damping coefficient on the plant. A simple PD type 
controller would hot be able to provide such variable damping within the bandwidth of 
the system. The corresponding closed—loop system eigenvalues are listed in Table 2. 
The logarithmic decrement for the lower modes have been increased considerably to 
meet the requirements, and some of the modes have been damped out in the process. 
The results indicate that all the specifications have been met fully and the resultant 
design is an appreciable improvement over the initial guess. 

A design oriented user interface is extremely important for engineering design 
optimizations such as this, to provide visual information to the user. Ideally, the 
information at the end of each iteration process should be available graphically to the 
user, and the ability to transfer control to the user to enable him/her to change various 
program variables must be provided. Fig. 4 shows the graphical display at the 
beginning of the design process, for the initial guess of the design vector. The bottom 
half of the screen shows the acceptability regions for the closed—loop eigenvalues in 
terms of the logarithmic decrements and the real and imaginary parts of the 
eigenvalues. The top half displays the upper and lower bounds on the design 
parameters and their values at the initial guess and at the end of each iteration. The 
corresponding display at the end of the optimization process is shown in Fig. 5, clearly 
displaying the results of the particular optimization we have discussed. 

CONCLUSIONS 

A method has been presented for the design of low-order decentralized 
controllers for rotor systems by constrained parameter optimization. The controller 
has been represented in terms of a control canonical form, to reduce the number of free 
parameters or design variables. Instead of minimizing a performance index, the 
method emphasizes satisfying a set of specifications laid down by the designer 
represented by acceptability functions through a sequence of constrained minimization 
problems. The proposed methodology has been illustrated by means of an example, 
and the accompanying graphical user interface has been demonstrated. Although the 
method shares the problems of other parameter optimization techniques such as 
providing a good initial guess and not guaranteeing a solution if one exists, the reduced 
complexity and flexibility of the controller structure and the ability to handle different 
practical design constraints directly make it a very viable alternative to other design 
methods. 
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G1(s) G2(s) 

Fig. 1. Rotor supported on two magnetic bearings 
(low-order decentralized controllers) 

Table 1. Initial guess design 

PHASE 3 MHIHIZATIOH OF ACCEPTABILITY REGION VIOLATION WITH STABILITY AND BOX CONSTRAINTS 

2IVAU1E REAL PART IHAG PART COHPLEX LOG ACCEPTABILITY DIFFERENCE 
NO. (1/SEC) (RAD/S) HODOLDS DECREMENT REQDIRENENT 

1 ( -6.4030, 668.4637) 668.4944 .0602 2.0000 1.9398 
2 ( -107.9883, 1747.2556) 1750.5895 .3883 1.8673 1.4789 
3 ( -237.2705, 2908.6404) 2918.3019 .5125 1.7045 1.1919 
4 ( -234.7262, 5262.9322) 5268.1639 .2802 1.3746 1.0943 
5 ( -8736.2564, 941.1672) 8786.8067 58.3228 1.9802 .0000 
6 ( -8736.4289, 941.2107) 8786.9829 58.3213 1.9802 .0000 
7 ( -167.2305, 9374.5829) 9376.0744 .1121 .7984 .6863 
8 ( -114.6667, 14951.9903) 14952.4299 .0482 .0167 .0000 
9 ( -75.7163, 21826.0283) 21826.1596 .0218 .0100 .0000 
10 ( -46.0429, 29824.0017) 29824.0372 .0097 .0100 .0003 

ACCEPTABILITY NINIHZATION FN = 6.39158111 

Table 2. Final optimized design 

PHASE 3 HINIHIZATION OF ACCEPTABILITY REGION VIOLATION WITH STABILITY AND BO X CONSTRAINTS 

EIGENVALUE REAL PART MAG PART COHPLEX LOG ACCEPTABILITY DIFFERENCE 
NO. (1/SEC) (RAD/S) HODOLUS DECREMENT REQDIREMENT 

1 ( -39.8749, .0000) 39.8749 
2 ( -42.1978, .0000) 42.1978 
3 ( -752.2274, 826.8541) 1117.8255 5.7161 1.9962 .0000 
4 ( -1394.5733, .0000) 1394.5733 
5 ( -1949.0420, .0000) 1949.0420 
6 ( -1069.5539, 4295.7279) 4426.8752 1.5644 1.5101 .0000 
7 ( -2583.7191, 8541.7922) 8924.0023 1.9005 .9151 .0000 
8 ( -3204.2184, 9590.2315) 10111.3578 2.0993 .7681 .0000 
9 ( -1315.2465, 10377.6490) 10460.6631 .7963 .6578 .0000 
10 ( -122.3856, 15339.8155) 15340.3037 .0501 .0100 .0000 

ACCEPTABILITY HINIHIZATION FN = .00000000 
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Fig. 2. Pole-zero locations and bode plot of the controller transfer 
function for initial guess design. 
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Fig. 3. Pole-zero locations and bode plot of the controller transfer 
function for initial guess design. 
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Fig. 4. Graphical display of design specifications, closed-loop eigenvalues 
and design parameters for initial guess design. 
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