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Abst rac t This paper deals with the flexible rotor-magnetic bearing system (FR-MBS) which 
has three concentrated masses. A mathematical model of the flexible rotor in the case of free-
free condition is derived using finite element method. Then we derive the reduced order model 
for control system design by eliminating higher order modes of the mechanical and electrical-
magnetic interaction system (full order model) beyond the first flexible mode. The H x central 

controller is designed using the solution of H x output feedback control. The control 
performance based on the mixed sensitivity problem is compared with it based on the robust 
stability. Simulations are done on the calculating model. The two unstable rigid modes can be 
easily controlled to be stable and the first flexible mode is better controlled than the uncontrolled 

case by the H * controller. The spillover phenomena of the higher order modes do not generate. 

Also it is clear that the H ' control design has robustness to the variation of the parameters of 

the model. 

1. In t roduc t ion The study of rotating machine supported by the magnetic bearings has 
been actively doing because of the excellent pertbrmance of it. Many papers have been reported 
about the active control and especially about both the vibration control and the stability for 
flexible rotors. 

The flexible rotor has infinite vibration modes. When the flexible rotor is supported by the 
magnetic bearings by means of the conventional control methods, the spillover problem is very 

important. The A/ x control is the powerful control theory to the model which has some 
uncertainty. The designs of robust stability control system|l| and vibration control 

system[2][3][4| based on the reduced order model have been proposed by using the //° c control 

theory. Also, several control designs of using the H x control to the magnetic bearing 
systems[5][6][7j were presented. However, these studies deal with the control for the only 
rigid modes, and do not take into account the reduced order model. 

This study is concerned with the Z/00 control design of the flexible rotor. Using a finite 
element method, the flexible rotor of continuous body is modelled as the discrete mass rotor[8|. 
Two reduced order models are considered here, one is the rotor which includes the only rigid 

modes, and the other includes both the rigid modes and the first order flexible mode. The FT* 
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robust stability problem and the f / 0 0 mixed sensitivity problem are used to control system design 
for the two reduced order models. From the results of the simulation, the control system 
designs based on the mixed sensitivity problem can not only cause no spillover but also control 
the each modes that the reduced order model includes to be stable and high damping. From the 

comparison of the control effects between the robust stability problem and the mixed 
sensitivity problem, the latter can both make the design of the controller which has integral 
feature in the design of controlling the rigid modes only and control the flexible mode to be high 

damping. Also, the control system of the control has a powerful robustness to the parameter 
variation. 

2. Modell ing Of FR-MBS Figure I shows a radial type flexible rotor supported by 
the magnetic bearings at the both ends of the flexible rotor. We make the following 
assumptions: 

(1) The attractive forces are proportional to the square of the coil current. 
(2) Both electromagnetic bearings have the same characteristics. 
(3) The induced voltages of electromagnets are ignored. 
(4) The coil inductances are independent of frequency and gap length and are constant. 
(5) This system is uncoupled between the x and y directions. 
(6) Only small vibrations near equilibrium are considered. 
And for simplicity, the analysis is done in the horizontal x direction. Under these 

conditions, we perform the modelling of the FR-MBS. 
2.1 M o d e l l i n g of flexible rotor Considering only the model of the flexible 

rotor inrFig.l(a), the equation of motion of the flexible rotor in free-free case is given by using 
a finite element method as follows: 

Motf+Ko<7 = 0 (1) 
where, 

q = X\ tf\ X2 #2 x?- V?,~Y 
and MQ is the mass matrix, K ( ) the stiffness matrix. Figure 2 shows the mode shapes of this 
rotor. 

2.2 Modelling of magnetic bearing system The following equation is 
obtained for one assembled electromagnet of the magnetic bearing system shown in Fig. 1 (b): 

y = L ^ - + R I (2) 
dt w 

where V is the coil input voltage, L is the coil inductance, R is the coil resistance, and / is 
the coil current. 

The attractive force of an electromagnet can generally be given by 

H2 

where P is the attractive force, ,u<) is the permeability, A is the face area. /V is the number of 
winding turns, and H is the gap length. From the standpoint ol small vibration near 
equilibrium, P, H, and / are given by 

P = Pa+p. I = io + i . H = ho + h (4) 
where po is the steady-state attractive force, io is the steady-state current, ho is the steady-state 
gap length, p is the control attractive force, / is the control current, and h is the control gap 
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length. Using the Taylor series expansion for small values of./ and h and assuming io » / and 
ho » h, we can finally get the following attractive control force in linear terms: 

P = 2 p o ( ^ - t ) = 2 p ( ) - i - - 2 p o £ - (5) 

where the first term is the control attractive force, the second the bias attractive force. 
2.3 Model l ing of FR-MBS In Fig.l the flexible rotor as Eq.(l) is restricted by the 

attractive forces of Eq.(5) as follows: 
M 0 q + K i ) q = F p (6) 

where. 

F = 1 () 0 0 0 0 
LO 0 0 0 1 OJ 

iL_xj_, 

l 
P = 

Pi 
iPrl 

p/ = -4/7()(^-;-L): forces of the A MB-Ls 

pr = - 4 po ( - p ): forces of the A MB-Rs. 
i() rlQ 

The bias attractive forces and the control attractive forces of Eq.(6) are separated as follows: 
M o q + K q = F i i (7) 

where. 
i = i i/ i r K = Ki) + Ki: Ki = diag ( - 4^0, 0, 0, 0,-4 f u , 0 ) 

T 

P0 

Fi = 

-4 P-± 0 0 0 0 
io 

0 0 0 0 - 4 ^ 
io 

0 

0 

By using the method of the mode analysis, we choose the following normalized modal 
matrix, 

(8) 
Equation (7) is transformed to the form in modal coordinate as follows: 

! ; + A l j ; + Q 2 £ ; = f j i (9) 
where 

/ = <p JM 0 Q1 = 0 JK <P A = 2 C Q fi = 0T Fj 
Moreover, considering the relation between the steady state voltage and the steady State 

current of Eq.(2), the state equation of the electromagnetic-mechanical system is given by 
(10) 

where 
Xf = AfXf + BfU 

Xf = 

Af = 

Ei = 

0 / 

- Q - A 

0 
0 

0 
R 
L 

l 

0 

f i 

Ei J 

u = \_ Vi 

0 

Bf= 0 

Ev 

E v = 

1 
L 

0 -

0 

1 
L - I 

If the rotor displacements at the magnetic bearings can be measured, the output equation is 
y = Cf Xf = X] xz • (11) 
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2- 4 Reduced order model of FR-MBS Generally the flexible rotor has infinite 
vibration modes in the case of free-free support. If we divide into the rotor to two parts using 
finite element method, the discrete model with six order modes is obtained. Because the FR-
MBS is originally unstable, we must control il to be stable. In this case, there are only two 
unstable rigid modes, and the flexible modes are essentially stable. Here, the construction of the 
reduced order model is considered upon the standpoint to stabilize the two rigid modes and to 
control the vibration of flexible modes. 

The reduced order model is constructed by truncation of the higher order modes in modal 
coordinates. Here, the state equation and the output equation including till the kth order mode 
are as follows: 

Xr = A,- Xr + B , U + D, W . . . . 
y = C r X r < 1 2 > 

Concerning the reduced order model of Eq.( 12), the control system designs are done in two 
cases. 

a. the case which only the rigid modes are controlled (fc = 2). 
b. the case which the rigid modes and the first flexible mode are controlled (k = 3). 

In addition, the closed loop system has to maintain the robust stability without spillover caused 
by higher order modes ignored in both cases. 

3. T/ 0 0 control system design H * control is the control method of making a 
estimating function, which is defined in frequency domain, to be minimum (or smaller than 

some value y). The estimating function is written as the following / / 0 0 norm, 

|| G(s)\\^ = sup ( j {G( jw)} (13) 

Here, a |G( /w)} is the maximum singular value of G(jco), i.e. the root of the eigenvalue of 

G *(jco)G(jco) (G *(jto) is conjugate transpose of G(jto)). Considering the control .system 
design of the reduced order model of Eq.(12), the block diagram of the closed loop system with 

the//0 0 controller is shown in Fig.3. 
Here, A r , B,, C, are the reduced order control objects, and u is the control force, v is the 

actual observation output, Z\ and z? are control values. Wi(s) and ^ ( v ) are weighting 

function matrices. And H(s) is the following H x controller, 

H( s )=C l l ( sI - A H y ] B H (14) 

We design the//3 0 control system based on the reduced order model, namely designing the 

/ / * controller that can not only cause no spillover with the closed loop system of both the 
reduced order model and the actual full order model (robust stability), but also control the 
vibration modes included in the reduced order model (high damping). 

In this study, we carry out the control system design for the FR-MBS using two methods, 

that is, the//0 0 robust stability problem and the mixed sensitivity problem. The features of 
control results will be made clear comparing with the two methods. 

3- 1 Control system design of only rigid modes If k = 2, the reduced 
order model of Eq.(12) becomes the control system design model including only rigid modes. 

a. Control system design of robust stability problem Robust stability problem is 
to design a robust controller for the model uncertainty which is equivalent to the model 
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difference between the actual plant of the full order model and the design model of the reduced 
order model. 

We get the block diagram of the robust stability problem when W Ĉ?) = 0 in Fig.3. Now 
let's consider the following equation: 

T(s) = H(s) | / - P,(s) H(s) j " 1 P f( S) (15) 
where 

Pt(s) = C r ( s I - A r ) - i B, (16) 
T(s) is called the complementary sensitivity function. It is used to estimate the degree of the 

robust stability of the closed loop system to the model error of control object. The essential 

condition of the robust stability is to minimize the H™ norm of the complementary sensitivity 
function. When there is some modelling error, the robust stability condition is defined as the 
following equation based on the small gain theorem, 

U(5)7\s)|U.< 1 (17) 
We assume that the uncertainty A(s) is defined using some weighting function as follows: 

o { A ( j ( o ) } ^ W { ( s ) (18) 
The condition that the closed loop system with uncertainty should be stable is given by 
following expressions, 

i) H 0 0 controller H(s) makes the P^s) to be stable. 

ii) || W l(s)T(s)\\ y i< 1 (19). 
b. Control system design of mixed sensitivity problem!3] In Fig.3, considering 

the sensitivity reduction (H/2(*') * 0), we obtain the formulation of the mixed sensitivity 
problem as follows: 

W2(s)M(s) 
< 1 (20) 

where, 
M(s) = | / - P,(s) H(s) ]-' Pt(s) (21) ' 

is called the settling function. If the settling function is small in lower frequency domain, it is 
well known that the poles of poor damped modes can move into left side on the complex plane, 
and the regulator with good response can be designed. 

3- 2 Control system design model including till the first flexible 
mode The reduced order model of Eq.(l2) becomes the model including both the rigid 
modes and the first flexible mode if A: = 3. The formulation of control system design is just the 
same with section 3-1. 

4. Simulation Table 1 shows the parameters used in the simulation model. Simulations 
are done in two ways: the control system design of only the rigid modes and that of till first 
flexible mode included. 

4- 1 Simulations of 3-1 The weighting functions for control only the rigid modes 
in the case of the flexible rotor is shown in Fig.4. The specification of the control is to stabilize 
the unstable rigid modes. That is to levitate by assuming the flexible rotor like the rigid rotor. 
There are two methods lor stabilization by using /-/" control to the rigid rotor, the controls of 
the robust stability problem and the mixed sensitivity problem. Table 2 shows the poles of the 
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closed loop system obtained by controls ol both the robust stability problem and the mixed 
sensitivity problem. It is found that the two unstable rigid modes are stabilized in both control 
cases, and the spillover caused by the truncation of flexible modes does not occur. Also, the 
control effects of these two cases are almost the same. 

Table 3 shows the poles of the controller. Figure 5 shows the frequency characteristics of 
the controller designed based on the robust stability problem, and Fig.6 shows that designed 
based on the mixed sensitivity problem. Comparing Fig.5 with Fig.6, the characteristics are 
very different from each other in the frequency domain smaller than 1 rad/sec. That means it has 
integral action in the frequency domain from 0.01 to I rad/sec in Fig.6. It is necessary to keep 
powerful stiffness called static stiffness lo various disturbances in the very lower frequency 
domain. The characteristics ol the conventional PID controller is almost the same as that of 
Fig.6, it is desirable to design the control system of magnetic bearing system using the mixed 
sensitivity problem from the point of this meaning. Of course, we have to say that the 
conventional PID controller can't take into account spillover problem. 

4-2 S imula t ions o f 3-2 Figure 7 shows the weighting functions of the model 
including till first flexible mode. Table 4 shows the poles of the closed loop system obtained by 
the control of both the robust stability problem and the mixed sensitivity problem. It is clear that 
although the two unstable rigid modes can be stabilized in the case of control of robust stability 
problem and the first flexible mode can not be controlled. Using the band-pass type weighting 
function W2(s), the damping ratio ol the first flexible mode is controlled from 1/1000 in the 
case without control to 1/27. The vibration of the first flexible mode is well controlled. Table 5 
shows the poles of the controller. 

Figure 8 shows the unbalance responses of the flexible rotor having 0.5g- mm unbalance at 
the center disk of the rotor. 

Figure 9 shows the responses of the initial displacement at lift off. We can see that it can be 
levitated with good stability in the case of the flexible rotor. The initial values of each 
displacement are Xi = 0.001 m, X2 = x i =0 . 

4-3 Robustness to parameter variations It has been, made clear that the 
robust stability to spillover caused by the truncation of higher modes is sufficiently guaranteed 

by the results of above mentioned. That means it is useful to use H x control to the control 
system design for the FR-MBS. 

Concerning the actual machines, it is also the important problem that the characteristic of the 
control system gets to be worse with parameter variations. Figure 10 shows the responses of 
the initial displacement in the case that the mass of the center disk increases twice. Figure 11 
shows the responses of the initial displacement in the case that the bias attractive forces varies to 

50% of the design value. Comparing Fig.lO and Fig.l 1 with Fig.9, we can find out that Hx 

control has powerful robustness to the parameter variations because the characteristics of the 
control system are almost unchangeable. 

5. Conclusions Simulations are carried out by using the two methods of robust stability 

problem and mixed sensitivity problem of //"control theory for the FR-MBS. The conclusions 

is summarized as follows: 

(1) The Z/ 0 0 control system to levitate with the good stability had been designed using 
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the reduced order model of the FR-MBS. 
(2) As to the reduced order model including only rigid modes, the controller designed 

based on the H x robust stability problem has not the integral feature. 

(3) As to the same model, the controller designed based on H x mixed sensitivity 
problem had the same powerful integral feature as that of the conventional PID controller. 

(4) As to the model including till the first flexible mode, il is necessary to design the 

controller based on the H x mixed sensitivity problem for the sake of vibration control of the 
flexible mode. 

(5) With the view of robustness to the spillover and the parameter variations, the H x 

control method is useful to the control system design of the FR-MBS. 
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(b) Model of magnetic bearing unit 

Fig.l Model of flexilbe rotor-magnetic bearing system 

1st flexible mode 256.8 rad/sec 

2nd flexible mode 1139.9 rad/sec 

3rd flexible mode 2446.2 rad/sec 

4th flexible mode 4944.4 rad/sec 

Fig.2 Mode shapes of flexible rotor 

Tfcble 1. Specification of simulation model 

Fig.3 Block diagram of closed loop system 
with H " controller 
(for reduced order and generalized system) 

Parameter Value Unit 

Mass m. 1.50 kg 
m 2 0.80 kg 
m3 1.50 kg 

Length // = /, 0.50 m 

Diameter d 0.02 m 

Damping ratio 6 0.001 
( = l , - , 4 ) 

Gap h0 
0.001 m 

Bias current <0 1.0 A 
Bias attractive force Po 50.0 N 
Coil inductance L 0.33 fi 
Coil resistance R 23.6 Q 

Frequency of Wi 40.9 Hz 
flexible modes 

«>1 181.5 Hz 
COj 389.5 Hz 
w4 787.3 Hz 
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Fig.5 Singular values of //"controller of 
robust stability 
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Fig.6 Singular values of //"controller of 
mixed sensitivity 

Table 2. Poles of closed loop system Table3. Poles of//"controller 

mode without control robust stability mixed sensitivity 

R-l ±34856 ± O.Oj 
^11835 + 0.0; 
^11640 + 0.0; 

-41835 + 0.0; 
-41640 + 0.0; 

R-2 ±35052 ± 0.0; -34856 ± 1.4; -34856 ± 1.4; 

F- l -0.19 ± 189.2; -0.26 ± 189.2; -0.25 ± 189.2; 

F-2 -1.05 ± 1052.2; -1.36 ±1051.8; -1.36 ±1051.8; 

F-3 -2.32 ± 2321.1; -3.10 ± 2318.2; -3.08 ±2318.2; 

F-4 -4.82 ± 4823.5; -6.86 ± 4809.7; -6.83 ± 4809.7; 

current -71.52 ± 0.0; -85.30 ± 0.0; -85.35 ± 0.0; 

R-i: rigid mode for Uh order, F-i: flexible mode for Uh order 

robust stability mixed sensitivity 

-88122 + 0; 
-87687 + 0; 

-88129+ 0; 
-87694 + 0; 

-21258± 6842$ -21366 ± 6874$ 

-21363 * 68743; -21261± 68439 

-3459 * 0; -3462 ± 0; 

-1090 ± 0; -1086 ± 0; 

-155.4 ± 0; -155.7 ± 0; 

-2.00 ± 0; 

-0.01 ± 0/ 
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'Fig.8 Frequency responses of flexible rotor 
to unbalanced force 

Table 4. Poles of closed loop system 

mode without control robust stability mixed sensitivity 

R-l ±34856- 0.0; -34856 ± 0.14; -34856 ± 0.14; 

R-2 ±35052-=£ 0.0; -35052 ± 0.14; -35052 ± 0.14; 

F- l -0.19 ± 189.2; -0.22 ± 189.2; -7.14 ± 191.6; 

F-2 -1.05 ± 1052.2; -3.23 ± 1054.5; -3.25 ± 1054.5; 

F-3 -2.32 ±2321.1; -8.27 ± 2321.4; -8.28 ± 2321.4; 

F-4 -4.82 ± 4823.5; -19.68 ± 4813.6; -19.67 ± 4813.6; 

current -71.52 ± 0.0; -130.45+ 0.0; 
-202.44 + 0.0; 

-127.74+ 0.0; 
-201.11+ 0.0; 

TableS. Poles of//"controller 

R-i: rigid mode for ith order; F-i: flexible mode for ilh order 

robust stability mixed sensitivity 

-84393 + 0; 
-83956 + 0; 

-19811± 6607S 

-19705 ± 65761/ 

-1810 ± 1621; 

-1809 ± 1621; 

-0.19 ± 189.2; 

-84397 + 0; 
-83961 + 0; 

-19707 ± 65764/ 

-19812* 66079 

-1809* 1621; 

-1809 ± 1621; 

-94.60 ± 163.9/ 

-13.48 ± 183.3; 

-13.47 ± 183.3; 

-11.53 ± 136.9; . 

-11.52 ± 136.9; 
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Fig.9 Time history responses at lift off Fig.lO Time history responses at lift off Fig.ll Time history responses at lift off 
(caseofm^ = 2mi) (caseofpo' = 0.5 p0) 
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