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ABSTRACT 

In this paper we introduce a combination of linear multivariable system control law synthesis 
together with actuator inversion to deal with non linear relations that appear in modelling the 
active magnetic suspension of a horizontal shaft. 
Approximations are introduced in order to reduce computations involved in digital control 
scheme. Simulation results show a good agreement between the use of this control scheme and 
the behavior of the system with perfect actuators. 

INTRODUCTION 

This paper is devoted to the control structure of the electromagnets involved in active magnetic 
bearing of a horizontal shaft. 
Lot of work has been published on that subject. Since non linear relations appear in the model 
of magnetic forces, approximation is usually made by linearizing the system around the nominal 
position. Furthermore, the voltage input is supposed continuous. 
In our case, we have considered a chopper to feed the electromagnet, so that the manipulated 
variable is the cyclic ratio of the chopper, which induces supplementary non linear relations to 
the system. The whole control scheme can be represented as follows : 
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Figure 1 : Control scheme 

We want to build a digital control of the magnetic bearing. So we have to find a compromise 
between complexity of control scheme taking into account non linear features and the amount 
of calculations involved in the control algorithm. 
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432 NONLINEAR EFFECTS 

We adopted a two step procedure to design that control scheme : 
- In the first step, the actuator is supposed perfect, which means that it is possible to find the 
adequate cyclic ratio to get the required force. Thus we are interested in the computation of the 
forces that maintain the shaft in a good position despite of disturbing forces. 
It becomes a multidimensionnal Unear problem whose complexity comes from variable cou­
pling terms due to gyroscopic effects depending on rotation speed. 
- The second step consists in the realization of the magnetic forces that are required at each sam­
pling interval by the above mentionned control algorithm. An inverse model of the actuator is 
used to determine the good cyclic ratio. Due to the complexity of the non linear expressions in­
volved in the actuator model, an exact inversion is not feasible especially in real time. In fact 
this problem is reduced to the calculation of one particular root of a third order polynomial. This 
one is derived from the approximation of the mean value of the magnetic force during the sam­
pling interval, and yields an accurate solution in the working domain of the actuator. 

The paper is organized as follows. We briefly set the mechanical model of the system. Then we 
solve the problem of digital control assuming that actuators are perfect. The next section deals 
with inversion of actuators, that is the relation between the cyclic ratio and the magnetic force. 
Finally we present some results with comments showing that the approximations introduced in 
actuator inversion are valid. 

MECHANICAL MODEL 

This model has been exposed in many papers, so that we briefly recall its main features. 
We consider a horizontal shaft and our interest is focused on the control of the position of the 
main axis of inertia. So we don't consider the translation or rotation, along or about the main 
axis of inertia. Futhermore, the rotor is supposed to be rigid and the main axis of inertia coincide 
with the geometric revolution axis. 

Let us denote (figure 2): 

- Fjj, Fjj i e {1,4} magnetic forces produced by electromagnets 
- Fy, F z disturbing forces due to the reaction beetwen tool and worked piece 
- y0, z0,3;0, z 0 motions of the center of mass G and their derivatives 

- 9, 6, \j/ rotations of the body around Gy and Gz and their derivatives 
- li, I2, lb distances between G and application of magnetic forces F^ and and disturbing 
forces respectively 
- j x , jy ,m moments of inertia about Gx and Gy and mass of the body 
- p rotation speed around Gx axis 

The two principles of linear and angular momentum yield the following equations of motions 

Fl2-Fn + F r 2 - F r l + m S + F

I 

VO = 

Fn-FM + Frl-Fr4 + Fy (1) 

6 PJx 0 "f e 1 F 
+ • jy v 
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Figure 2 : Description of the mechanical model 

They can be put in a continuous state space representation, as follows : 
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(2) 

X = A X + B- U + B' U' 

Let w be the nominal gap. Since measures ĝ  and g^ are supposed to be made in the magnetic 
bearing planes, we have the following relations : 
g n = w + z 0 - (/ j-G) 

Sn = w-*o + l i - Q 

= w - y o - C i V ) 

S H = w + yo + l i V 

which lead to the output equation : y = 

8n-» 

8ri-w 

8n-w 

8r3-W 

8r\ = W+Z0+/2 e 

gr2 = w - z 0 - ( V 6 ) 

8r3 = w-yo + l2 V 
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Jx In the state matrix, a variable term P ^ appears. It indicates the coupling term due to the gy­

roscopic effects, depending on rotation speed p about Gx axis. 

CONTROL STRUCTURE DESIGN 

Let us recall that we search a digital control scheme, and that at this stage actuators are supposed 
perfect, that is, are able to yield the required magnetic forces. 
In these conditions, the problem is a linear time varying multidimensionnal one, and we need a 
discretised model of the mechanical system, expressed in terms of rotation speed about Gx axis, 
since it induces gyroscopic coupling terms as it was shown in previous section. 
Such a discretised model is available and has the following expression : 

X(k+l) = FX(k) +GU(k) +G'-U'(k) 

where F = 
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with a = ——r—— (5) 

Te sampling interval 

and G matrix has the following structure : 
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where a = - b = - c = - -
Jy Jy 

To get this model, we suppose that the magnetic forces as well as the disturbing forces are con­
stant during sampling interval. Concerning the second ones, we assume that they have small 
variations during the sampling period. 
This model is somewhat complex, and it is a priori difficult to build a state feedback law to con­
trol the system. 
Fortunately, there exist appropriate linear combinations of force inputs that lead to the decom­
position of the whole system into 3 subsystems of dimension 2, 2 and 4 respectively. It is then 
easier to determine control law for each one. 
V^k) = U3(k) +U4(k) V2 (*)={/,(*) +U2(k) 

V3(fc) = b-U^k) +cU2(k) V4(k) = bU3(k)+cU4(k) 

Two subsystems deal with translations of the center of gravity and are almost identical and en­
tirely uncoupled. We used pole placement to derive feedback gain matrix. 

V * + i ) 
.Y2(/fc+l) 

1 Te 
0 1 

* , ( * ) 

X 2 ( * ) 

a-Te' 
2 

a • Te 

V l (*) 

K, K2 Vj (£) = el(k) + K X(k) with K = 

The third one concerns rotations about Gy and G z that cannot be decoupled without introducing 
cancellation of poles-zeros that lie on the unit circle. The control of this subsystem requires co­
efficients that are dependant of the speed rotation p in the feedback gain matrix in order to get 
performances that remain almost invariant with respect to speed variations. 
Since the linear combinations are invertible it is possible to come back to real force inputs. 
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h = ^ (Te-(± -sin (a -Te))) 

V(k) = e(k) +KX(k) K = 
0 Kn 0 -K22 

0 K22 0 Kn 

ACTUATOR INVERSION 

The previous control scheme leads to a control algorithm that computes periodically the re­
quired forces to be applied to the shaft, under the assumption that these forces are constant dur­
ing the sampling interval. 
The magnetic force is produced by means of an electromagnet whose coil is fed by the following 
device: 

Figure 3 : coil feeding 

The caracteristics of the coil (resistance and inductance) are supposed constant, so voltage and 
current evolve as indicated in figure 4. 

Figure 4 : current and tension evolution 
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Now the problem we have to solve is the calculation of the cyclic ratio 7 at time k.Te, knowing 
the force F to be applied at that time, considering the commonly used non linear relation 

i2

c(t) 
F(t) = D ' - ± (8) 

82(t) 
where i c(t) is the current in the coil 

g(t) is the gap between electromagnet ant the shaft 
D is a constant parameter 
F is the magnetic force 

A first method to derive 7(k) consists in the inversion of the relation linking the final state at time 
(k+l).Te to the variable y(k). It involves double integration and is too much complex to be ap­
plied here. _ 
A second procedure consists in the search of 7(k) such that the mean value F(k) of F(t) for 
te [k- Te, (k+i) Te] is equal to the constant value F(k) required by the control algorithm. 
In order to yield the problem easily tractable we make the following assumptions : 
- the switching period is equal to the sampling interval. 
- the gap is constant during the sampling interval. 
- two electromagnets are concerned by the production of a force F(k). But only one works at 
once, according to the sign of F(k). 
Since relation between F(k) and y(k) contains terms in y and exp(y), an exact inversion would 
be difficult and unusable in practice (computational burden would be too heavy and not com­
patible with a small sampling period). It is why affine approximations of exponential arcs of the 
curve i c(t) for te [k Tt, (fc+i) - TJ have been used, which leads to a polynomial expression of 

F(k) of order five in y, which can be reduced to a polynomial of order three in the working range 
of the electromagnet. _ 
Various affine relations can be candidate to approximate F(k). 
We have chosen the one described on figure 5, on the basis of two criteria : 

- the relative error -—'-—^—— to keep a good model of the behavior of the coil. 

DU)-t>0c) Teri 

dt, which represents the effect on - the relative error —c where D (g = J J (o) • da) 

the shaft positionning (double integration of a force). 

These two expressions have been evaluated for various values of ic(0) ranging from 0 to I c 

and various values of y ranging from 0 to one. The approximation is suitable for a ratio — less 

or equal to 0.1, where x is the time constant of the electromagnet. 
Furthermore it can be shown that only one root of the third order polynomial has to be computed 
by means of an analytic expression, which reduces significantly the computational effort. 

The linear approximation is defined by the following equations : 

fOT0<t<y Te :(D1) => lc(t) =--. (l0--).t + Il '0 

forY-7 <</<r e :(D2) => U<) = c-t + d with c = • • ( / 0 -^) • y-Te + i 0) (9) 

and rf = ^ ( - £ . ( / 0 - £ ) . Y . r e + / 0 ) - ( T . r < + ^ 
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(Dl) 

Figure 5 : linear approximation of the current curve 

SIMULATION RESULTS 

Results presented below were obtained with a simulation program using Madab language. Work 
is currently in progress for implementing these algorithms on a Personnal Computer with trans­
puter architecture for the control of a true process. 
We first did tests to get information about the behavior of the shaft in case of perfect actuator. 
Figures 6 show the evolution of shaft positionning starting with given initial conditions or un­
der the influence of disturbing forces applied at the end of the shaft. 
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Figure 6 : Shaft positionning assuming perfect actuators 
After that, we introduce the non linear model of the actuator together with the inversion algo­
rithm presented in section 4 . Saturations are treated as follows : 
- at time k.Te, from the measure of ic(k.Te) it is possible to derive average maximum force 
(F m a x (k) for y=l) and minimum force (Fmj n(k) for y=0), that can be produced by the electro­
magnet . 
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- Let F(k) be the force required by control algorithm ; then 

if F ( k ) > F m a x ( k ) thenY(k)=l 

else if F { k ) < F m i n { k ) thenY(k)=0 

else compute 7(k) 
end 

end 
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Figure 7 : Shaft positionning with real actuators 
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At the sight of the curves given in figures 7, some comments can be made : 
- the actuator inversion does not affect the behavior of the whole system. Assumptions that were 
made in section 4 are acceptable. 
- for some values of the required forces, some oscillations of the value of y are noted. This is 
due to the features of the chopper, and a more precise analysis of the behavior of that device 
shows that because of constraints on input voltage, and cyclic ratio, it is sometimes impossible 
to produce the required average magnetic force at each sampling interval, but averaging is made 
over several periods. In this case, it doesn't affect the behavior of the process. 

CONCLUSION 

In this paper we have presented a method for designing the control structure of a non linear mul­
tivariable system. It combines conventionnal control law synthesis for linear system and inver­
sion methods to deal with non linear features of some parts of the system. 
Approximations have been made in order to simplify calculations that must be done in real time 
since we have considered a digital control scheme. 
Simulation results show a good behavior of the whole system. Work is currently in progress to 
implement these algorithms in a PC computer including a transputer architecture to test this con­
trol scheme on a real process. 
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