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ABSTRACT 

This paper describes the stability study of a partially liquid-filled rotor system 
supported by magnetic bearings. The liquid is assumed to be viscous arid incom
pressible. In addition to the translational mode, the tilting mode of the rotor system 
is also taken into account here. In order to investigate the stability of the rotor sys
tem, complex eigenvalues are calculated numerically by using Newton-Raphson's 
method. 

1. INTRODUCTION 

A rotor partially filled with liquid is widely used in rotating machines like centrifuges. 
The instability called asynchronous whirling motion has been observed over a range of rotating 
speed when such kinds of rotating machines are working[l-2]. Since this instability may result 
in a large vibrational amplitude in rotating machines and lower down their performance, it is 
necessary to control the instability. 

On the other hand, magnetic bearings have a lot of advantages such as elimination of 
lubrication system, ability to control vibrations, etc., and therefore have been studied by many 
researchers in recent years[3-5]. In our previous study[6], we made an attempt to apply a 
pair of magnetic bearings td a liquid-filled rotor system in order to support it and to control 
the fluid-induced unstable vibration. Our results have shown it is practicable to control the 
unstable vibration by means of magnetic bearings, but for designing a more effective controller, 
detailed information about the stability of a liquid-filled rotor is needed. 

The stability of a rotor which is partially filled with liquid has been investigated for many 
years. For example, Wolf[l] studied the stability of a rotor which is partially filled with an 
invicid incompressible liquid and also performed an experiment. Saito[2] has found a stable 
bound diagram for a liquid-filled hollow axis which is under the parallel motion, but in his 
study he considered that the depth of the liquid was small enough compared with the diameter 
of the hollow axis. 

However, those results are not sufficient to be used when we design a liquid-filled rotor 
supported by magnetic bearings, not only because the supporting stiffness and damping of a 
magnetic bearing vary with the external load but because it is necessary to find the relations 
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Figure 1. Schematic diagram of the system and the coordinates 

between the stability of a rotor system and control parameters to develope the control algorithm 
for the fluid-induced instability as well. 

This paper presents a study on the stability analysis of a partially liquid-filled rotor system 
which is supported by a pair of magnetic bearings. The liquid is regarded as viscous and 
incompressible. The unbalance of the rotor is assumed to be negligible. The description 
of the rotor system consists of three parts: the motion of the liquid, the motion of the rotor 
system, and the control system of magnetic bearings. The effects on the stability of various 
parameters, such as, the viscosity of the liquid, the liquid fill ratio, the mass of the rotor, the 
control parameters of the PD controller, etc., are investigated theoretically. 

2. GOVERNING EQUATIONS 

2.1 PROBLEM DEFINITION AND COORDINATES 

The vibration of the rotor system including liquid is treated as a coupled problem here. The 
schematic diagram of the system under consideration is shown in Figure 1. A rotor partially 
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filled with viscous liquid is placed vertically. Two active radial magnetic bearings #1 and #2 
are used at each end of the shaft connected to the rotor to support the rotor system. In the 
vertical direction, the system is kept stable by another kind of bearing with which is not dealt 
in this paper. In addition, rotors 1 and 2 indicate the rotor of the magnetic bearing and the rotor 
including liquid respectively. 

2.2 EQUATIONS OF THE ROTOR SYSTEM 

Let L be the total length of the rotor system, h the length of rotor 2 , L j the position of 
the rotor 2 from the upper edge of the system, and L G the position of the mass center from 
the upper edge of the system. The basic equations of the rotor system with respect to the 
coordinate system Oo - fixed on space are 

d2; 
(2m! + ̂ 2)^2 =Fl+F2 + Pf 

{UM + Jd2 + m1L
2

G + m^L - LG)
2 + m2(LI - LG)

2} 
dt2 

-j(2Jpl + J p i ) ^ = F2(L - LG) - FXLG + Pf{Li - LG) 

(1) 

where m\ and m2 are the masses of rotors 1 and 2 respectively, Jd\, Jdi the inertia moments, 
and Jpi, Jp2 the pole inertia moments. In addition, F\ and F2 are the control inputs of magnetic 
bearings #1 and #2 respectively, while Pf is the general liquid force acting on the rotor system. 
Furthermore, z is the complex indication of the displacement zn and ẑ 'varf— and £ -directions, 
and 4> is complex indication of the rotation angle ^ and ^ around £— and 77—axes, that is 

z = zn + jz^ 

4> - </>C + j ^ r j 
(2) 

2.3 EQUATIONS OF THE LIQUID 

Let a be the radius of the thin rotor including liquid, p the density of the liquid and v the 
viscosity of the liquid. Only considering the first mode of the circumferential surface waves, 
the basic equations of the liquid with respect to the coordinates 0\ - r6 fixed to the rotor can 
be expressed as 

du 

dt l V r2 r^dd' pdr dt2 

d2z 

dv 
at r2 r2 d6 prdO dt2 

.d2i 

du u dv 

dr r rdO 
= 0 

(3) 

where y 2 = d 2 /dr 2 + d/(rdr) + d 2 l(r 2 dd 2 ) , z = z + ( L l - LG)4>, while u and v are the fluid 
velocity in r - and 6 - directions respectively, and b is the radius of the liquid free surface. 
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Assuming w is the vibrational displacement of the free surface of the liquid, the boundary 
conditions may be given as 

u = 0 ] 
\ at r = a, (4) 

v = 0 

u = 
dw 
~dt 

du 
-p - pQ2bw + 2pu— = 0 

or 
dv v du\ 

pv{- + — ) = 0 
dr r rdO 

at r = b, (5) 

where equation (4) indicates that the relative velocity between the liquid-filled rotor and the 
liquid at r = a must be 0 and equation (5) indicates the equilibrium condition of pressure at 
liquid free surface r — b. 

2.4 CONTROLLER OF MAGNETIC BEARINGS 

Letting #o, and i i be the gap between the rotor and the electromagnets, the bias current 
in coil and the control input current respectively, we can linearized the attractive force acting 
on the rotor system from magnetic bearings as 

F\ = Ki i i + K n (z — LG4>) 

F 2 = K i h + K n { z + ( L - L G ) ^ } j ' 
(6) 

where Ki and I \ n are parameters depending on io, go and the physical constants of the magnetic 
bearings. In addition, the control current i i and ^ will be decided according to the conventional 
PD control law with a first-order delay filter. 

i, = -Kp{z - LG<p) - Kd^ + KdLG

dP 

dt dt 

i2 = -Kp{z + (L- LG)0} - Kd^ - Kd{L - LG)^ 

rr, da 

(7) 

(8) 

where T d is the time constant of the filter, a,P the output of the filter and Kp,K d is the 
proportional gain, differential gain respectively. 

2.5 ANALYSIS OF COMPLEX EIGENVALUES 

In order to investigate the stability of the rotor system, we will calculate the complex 
eigenvalues of the rotor system. Defining u, v,p, w,a,f5,z and (j> as 

u = « 1(r)eJ'«'- n) t- 9> ' 

v = v x { r ) e ^ - n W | , ' (9) 

p = p 1 ( r )eJ '« w - n ) 4 - f l > 
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(5 = ^ 

z = z\e 

and substituting equation (9) into equation (3) yield 

(10) 

(11) 

(12) 

i y r 2 -A + ev r -^ - + {3u - J{UJ - f i y 1 } — ± - { 3j(u; - n ) r } — - = 0 , (13) 
arz r ar dr4 dr3 

dui 
vi = -j{ui +r—) , 

dr 

d2v\ dv\ 2v\ 
Pi = p(oj - Q)rt;1 - 2jpQ,ru\ + jpvr(-—Y + 

(14) 

Where zi = z\ + (Li — L Q ) ^ • From the above three equations, u\, v\ and pi can be solved as 

u x = 6 ^ + 62c2 + <53e
/m(-Ar+Aa)c3 + (54e/m(Ar-A6)c4 

u, = Ssd + 66c2 + 6 1 e
I m ^ X r + X a h 3 + 6%e I m^ r- x^c 4 \ , (16) 

pi = 69ci + 6ioc2 + 6neIm(-Xr+Xah3 + (512e
/m(Ar-A6)c4 + puj2rzi 

where 

6, = — (5, = 
_W[(Ar) 

& = 
A2r <55 = - j 

A2r 

<5fi = 4 

c i ^ ( A r ) , j n \ ( \ r ) 
Ol = ^ h 

A A2r 
_ jn 2

0 (Xr) jH 2 i ( \ r ) 
A A2r 

<58 = . -

pi/ 
69 = — - j>r'(f2 + UJ) 

pp jp(3n - u) 
010 = — r 

r-3 r 
6n = ^^o(Ar) ^3 Hi(\r) 

<5i2 = j^HoiXr) — Hi(\r) 

and n l ( \ r ) ,T i \ ( \ r ) ,H l (Xr ) and W?(Ar) are defined in equation (18). 

^ 1 
^ ( A r ) = ^(Ar)e / m ( A ' - ) 

WJ(Ar)-= n\(Xr)eIm^ 

Hl(\r)=H2{\r)e-I^Xr) 

n2i(Xr) = H\{Xr)e-Im^ 

(17) 

(18) 
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here A2 = j ( n - LO)/U and Im(Xr) < 0. As a result, we can avoid the overflow problem 
when calculating Hankel functions Ho(\r ) ,H\( \ r ) , Hl(Xr),7ij(Xr) numerically even u is 
very small. 

Furthermore, substituting equations (9) and (16) into boundary conditions (4), (5), we can 
solve the liquid pressure p and then integrating p over the inner surface of the rotor gives the 
general liquid force Pf as 

Pf = Az^"1 = A{z + (Li - LG)^} , (19) 

where, A is a function of p, v, 17, OJ, a, b, h and can be calculated numerically. Hence, solving 
the relation equations between F\, F2 and z,<j>,a,P from equations (6), (7), then substituting 
those and equation (19) into equation (1) will result in two differential equations with respect 
to variables z, (j), a, (3, they are 

(2m! + m2)^ + {2(^iAp - Kn) - A}z 

- { ( K i K p - K n)(2LG - L ) + A(L, - £<?)}<£ 

+1KiKd

d^ - KiK^lLc - L)^ = 0 

-{(KiKp - Kn)(2LG -L) + A(Li - LG)}z 

+{2Jdi + Jd2 + miL2

G + mi(L - LG)
2 + m2(Li - LG)

2} 
dt2 

-j{2Jpi + Jp2)Q 
dt 

+[(A'iA-p - Kn){L2

G + (L - LG)
2} - A(Li - LG)

2}cj> 

. da 
~dt 

- K i K ^ l L o - L ) ^ + K i K d { L G + (L - L G ) 2 } ^ = 0 

(20) 

dt 

Combining equation (20) with (8) and introducing equations (11), (12) into them give 

[D}{x} = {0} , (21) 

where, {a;} = {zi , fa, ai , Pi } T and [£>] is a 4 x 4 matrix,which can be expressed as a function 
of the following dimensionless variables. 

U)0 - po V 

(2mi + m 2) 

U) = 

Wo 

Td — Tduo 

p7ra2h 
ML = 

Jdi = 

2m 1 + m2 

Jdi 
(2mi + m 2 )L 2 

v = 

Mi = 

Jpi — 

Jd2 = 

KiKp — Kn 

Kpo 
mi 

2mi -f m2 

(2m! + m2)L2 

Jdi 
(2mi + m 2 )L 2 

Kd = 

M2 = 

Jp2 = 

(2m 1 +m2)u0 

7712 

2m 1 -(- m 2 

(2mi + m 2 )L 2 
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In order to get nontrivial solutions of zi, fa , and (3i from equation (21), it is obvious that the 
following equation must be satisfied. 

\ D \ = 0 . (22) 

Therefore, from equation (22) dimensionless eigenvalue a> can be calculated by using 
Newton-Raphson's method. 

3. NUMERICAL RESULTS 

A numerical calculation was conducted on basis of the above theory. 

Figure 2. Effects of the proportional gain K p on the stability 

From equation (22), many complex eigenvalues can be calculated, but we will only inves
tigate those which are responding to the unstable vibrational mode. The complex eigenvalue Q 
has a real part and an imaginary one. The rotor system is stable if the imaginary part is positive 
and vice versa. The zero imaginary part indicates the critical point between the unstable and 
the stable states. 

Figure 2 shows the effects of the proportional gain Kp on the stability of the system. It 
is seen that the lower critical speed is approximately equal to 1.22,1.42,1.79, while the upper 
critical speed is about 9.00,9.60,10.20 respectively when Kp = 0.5,1.0,1.5. the unstable 
region expands a little by little with increase in Kp. Furthermore, the maximum of the 
imaginary part of <I>, which measures the unstable degree of the system, becomes larger with 
increasing Kp. 

Figure 3 shows the effects of the differential gain Kj on the stability of the rotor system. 
It indicates that, with increasing Kd from 0.3 to 0.9, the lower critical speed has little change, 
while the upper critical speed grows largely, in other words, the unstable region expands a lot. 
In addition, it can also be seen that the unstable degree increases with the decrease in Kd. 

Effects of the liquid fill ratio b/a on the stability of the system are depicted in Figures 
4, where b/a = 0 indicates that the rotor is completely filled with liquid. It is seen that the 
unstable region can not be observed when b/a = 0.2, while when b/a grows from 0.4 to 0.6, 
the unstable region gets wider first and then conversely gets narrower from a certain point. 
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Figure 3. Effects of the differential gain Kd on the stability 
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Figure 4. Effects of the liquid fill ratio bja on the stability 

The relations between the dimensionless rotating speed f i and £> for v = 5 x 10 -6,5 x 
10 -5,5 x 10~4 is presented in Figures 5(a),(b). Figure 5(a) shows that the ratio of real part of 
Co to Cl is almost constant with increasing u. On the other hand. Figure 5(b) shows that, as P 
grows from 5 x 10~6 to 5 x 10 - 4, the lower critical speed increases, while the upper critical 
speed tends to decrease. Thus, the unstable region gets narrower and narrower as the viscosity 
is enlarged. Moreover, the unstable degree also becomes lower with increasing viscosity. 

Figure 6 shows the effects of the mass ratio Mi /Ma on the stability of the system. 
As Mi J Ma grows, the lower critical speed almost keeps constant, the upper one, however, 
increases gradually. This is perhaps influenced by the second mode(tilting mode) of the rotor 
system, since the first mode(translational mode) is considered to be affected only by the total 
mass. 
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Figure 5. Effects of the viscosity of liquid on the stability of the rotor system 

4. CONCLUSIONS 

The stability of a partially liquid-filled rotor system supported by magnetic bearings is 
investigated. It has been found that the viscosity influences the stability of the rotor system 
greatly. The unstable region and the unstable degree decrease with increasing viscosity. 
Moreover, the unstable degree increases with increasing the proportional gain of the PD 
controller, but decreases with increasing the differential gain. As the liquid fill ratio grows, 
the stability gets worse first and tends to be stable from a certain point. The ratio of the mass 
of the rotor of magnetic bearing to the mass of the rotor including liquid affects the instability 
of the system when the tilting mode is taken into account. The unstable region gets narrower 
gradually with decrease in the mass ratio. On basis of these results, we can design an controller, 
for example, a controller with a scheduled proportional gain and differential gain, so that the 
unstable vibrations may be reduced. 
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Figure 6. Effects of the rotor mass ratio M1/M2 on the stability 
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