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ABSTRACT 

The ability of active magnetic bearings to influence the dynamic characteristics of rotating 
equipment is well documented. Present-day magnetic bearings are designed to introduce a 
radial (and/or axial) control force to the rotating element, the bearing dynamic parameters 
having been selected to minimize system vibrations. This paper describes a different control 
strategy which may be considered as being complementary, or in some cases an alternative, to 
the normal approach. In this case the control effort is introduced to the rotor in an angular sense. 
A theoretical study is performed and it is shown that cases exist where such an approach could 
be beneficial from a rotordynamics standpoint. 

INTRODUCTION 

Active Magnetic Bearings (AMB's) have been around for some time now and have been shown, 
in many instances, to offer significant advantages over their conventional passive counterparts, 
i.e. oil-film and rolling element bearings. 

Application of the AMB is becoming more widespread as unit costs decrease and more 
information on user experience, in terms of performance and reliability, is made available. 

Utilization of active magnetic bearings generally provides the machine designer with greater 
freedom in selecting the system parameters and thus greatly enhances his ability to optimize the 
machine dynamics in some fashion [ 1 ] , whilst ensuring that equipment performance criteria can 
be met. Currently, magnetic bearings are employed to control rotor motion in both the radial [2] 
and axial [3] directions. 

In this paper, an additional mode of control, termed angular control [4], will be presented and 
it's effectiveness, in comparison to conventional radial control, assessed analytically on a simple 
rotor system and on a full scale rotor. 

RADIAL, AXIAL AND ANGULAR CONTROL 

RADIAL CONTROL 

The construction and principle of operation of present-day AMB's is well documented [5]. 
Radial magnetic bearings are constructed in a manner similar to that of induction machines. 
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330 ALTERNATIVE ACTUATOR DESIGN 

Fig. la depicts a cross-sectional view of a typical radial AMB. The device provides both a static 
force, to counter rotor weight, along with a dynamic component to limit rotor motion about some 
predetermined position. 

AMB's are unstable in open-loop configuration and so displacement-related feedback control 
is employed to achieve the desired system dynamic characteristics, i.e.. stiffness and damping. 
A variety of control strategies may be employed [6]. 

AXIAL CONTROL 

Axial AMB's operate in a similar manner. Shaft axial displacement is monitored and any rotor 
thrust present is countered by an axial control force applied to the rotor through a shaft-mounted 
disc (Fig. lb). Axial stiffness and damping forces are provided by suitable selection of the 
proportional and derivative control feedback gains, respectively [3]. 

ANGULAR CONTROL 

The proposed implementation of angular control is shown schematically in Figure Ic. Here, 
four horseshoe-type electromagnets are employed at each side of a high-resistivity, or lami^ 
nated, shaft-mounted disc. Each magnet, is located in a single quadrant of the disc. The 
arrangement is almost identical to that adopted for axial control. However, in this case the 
electromagnets are utilized to apply a control moment. 

The electromagnets operate in pairs, each active pair consisting of diametrally opposed 
magnets, one on either side of the disc. A signal proportional to shaft slope is obtained by 
summing shaft displacement measurements taken at each side of the disc. This signal can then 
be utilized in a feedback control loop to provide the rotor system with angular stiffness and/or 
damping. 

Note that in contrast to the radial and axial control schemes, angular control demands only 
the application of a dynamic force. 
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WHY ANGULAR CONTROL ? 

Before proceeding, it is necessary to address the question: - "Why use angular control?". 
Even without recourse to detailed analysis it is possible to visualize cases where application 

of angular control could be beneficial. 
Figure! shows typical mode shapes for a flexibly-mounted uniform shaft having both stiff and 
soft supports. In Figure 2a the mode shapes are presented in the conventional fashion, i.e.. in 
the form of shaft lateral displacement. Figure 2b presents similar information but using shaft 
angular displacement (slope). In this way the points of occurrence of nodes and anti-nodes, 
important when considering control effectiveness, can be readily compared for both control 
cases. 

If control is considered to be implemented at the supports, it is clear that for large support 
stiffness values the existence of lateral nodes close to the support would lead to reduced radial 
control effectiveness. In contrast, the emergence of angular antinodes in this region would 
greatly enhance the angular control capability. 

More generally, the fact that radial and angular antinodes do not necessarily occur at the same 
location (Fig. 2) indicates that by.considering angular control the machine designer is presented 
with options not previously accessible. 

RADIAL VERSUS ANGULAR CONTROL 

The effectiveness of angular control is most easily assessed by examining the relative 
performance of radial and angular control implementations on a representative shaft system. For 
the purpose of this investigation only damping control is considered. 

COMPARISON APPROACH 

The comparison is performed by considering the commonly adopted model of a uniform shaft 
on flexible supports. This approach enables us to make use of dimensionless performance 
parameters which assists in broadening the applicability of the results. 

Figure 3 shows the shaft system under analysis. The control methods are assessed by studying 
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the influence of the introduction of control damping at the supports. 
Modal frequency and damping are determined numerically, as a function of stiffness ratio 

(support stiffness/shaft stiffness) K, using an eigenvalue analysis program. 
To enable direct comparison of the analysis results it is assumed that equal linear damping 

coefficients are employed in both the radial and angular control cases. That is, referring to Figs 
3, the angular damping rate CA is given by: 

(1) 

The eigenvalue analysis program employed for the analysis has been constructed to utilize the 
damping parameter as defined in equation (1) for angular control assessment. 

Control Performance Assessment 

For comparison purposes use is made of the fact that in rotordynamic systems, such as the one 
being considered here, only minor changes in the system damped frequencies occur even when 
substantial damping is introduced. This results from the fact that the system eigenvectors, are 
relatively insensitive to damping [7]. Figure 4 illustrates this phenomenon, for the case shown 
in Figs 3, (with EI=4230 Nm2; L=0.956m) and shows the eigenvalue locii as a function of radial 
support damping for stiffness ratio K = 1.0. 

Investigation of the model for stiffness ratios in the region 1-10 showed that, generally, modal 
damping levels of as much as 70% of the respective optimum level (for flexural modes) could 
be achieved with damped-frequency changes of much less than 10%. In the case of rigid-body 
modes it was found that critical damping could be achieved with similarly small frequency 
changes. 

This fact allows us to predict a linear relationship between the input control damping and the 
resulting modal damping, thus simplifying the comparison procedure. 

Figure 5 shows the results of a regression analysis performed using the data from Fig. 4, for 
the first and fifth vibration modes. The slope of the graph gives the change in Log Dec, of the 
respective mode, per unit of control damping and will thus be termed the Damping Control Rate. 

This Control Rate parameter has been computed for each of the first five system vibration 
modes, over a range of stiffness ratio values of 0.1 to 10, for radial and angular control types. 
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The computed angular Control Rate values are subsequently modified to take account of the 
moment arm effect to enable direct comparison with radial Control Rates. A new dimensionless 
parameter defining the efficiency of angular (damping) control relative to radial (damping) 
control can be computed, viz : -

Damping Control Ratio = Modified Angular Control Rate 
Radial Control Rate 

Therefore, when both types of control are equally effective the Damping Control Ratio is equal 
to unity. A value greater than unity indicates the superiority of angular control and vice-versa. 

RESULTS OF THE ANALYSIS 

The effectiveness of angular control is clearly greatly dependent on the radial distance from shaft 
centerline to the electromagnets, i.e. the magnitude of the moment arm r. 

For the purpose of this investigation this parameter is defined in terms of the ratio 
R = r/L. Values of R = .05, .1 and .15, felt to be acceptable in practical installations, were 
considered for presentation of the results. In interpreting the analysis results presented here it 
is important to recognize that the performance of angular control has been measured relative to 
radial control and no reference is made to absolute performance. 

Figure 6 shows the control-ratio plots for the first five system modes, as a function of stiffness 
ratio, K. The first mode control-ratio (Fig. 6a) is seen to increase monotonically as the stiffness 
ratio increases, i.e. as the shaft becomes relatively more flexible angular damping performance 
improves substantially. For stiffness ratios in the range 2 to 4, depending on the value of the 
radius parameter R, both radial and angular control are observed to be equally effective. At 
higher stiffness ratios radial nodes are in close proximity with the supports and the superiority 
of angular control is evident. 

In contrast, when the shaft is relatively rigid (K = 0.1 to 1.) control of the first two (rigid-body) 
modes deteriorates when using the angular approach. In the case of the second mode (Fig. 6b) 
this situation is not improved until the stiffness ratio is increased significantly (K > 4). 

The control-ratio plots for modes 2 and 3 exhibit regions where angular control becomes 
totally ineffective. This is due to the emergence of angular nodes close to the support at stiffness 
ratios of 2 and 10 for the second and third modes, respectively. 

The control-ratio plots for modes 3,4 and 5 (Figs 6c to 6e) are all very similar from the point 
of view that effective angular control can be achieved over a wide stiffness-ratio range. In the 
case of the third mode the control-ratio varies from 0.2 to 0.5 over the stiffness-ratio range K = 
. 1 to 4 (for R = 0.15). The minimum control-ratios for the fourth and fifth modes, for the same 
conditions, are found to be 1 and 2., respectively. More specifically, at low stiffness ratios (K < 
1) modes 3,4 and 5 become the shaft flexural modes and the influence of angular control is even 
more pronounced. 

This has important implications when considering present-day magnetic bearings. AMB's 
operate with low stiffness (generally K~l) so that rigid body modes are well damped in such a 
case. However, control of the flexural modes can be more difficult and the designer must ensure 
the absence of radial nodes. The ability of angular control to significantly influence the flexural 
modes in these circumstances could therefore greatly assist the designer. 
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EXAMPLE 

Chen [8] recently analyzed a full-scale vertical pump rotor which uses magnetic bearings. This 
case is selected for further analysis due to it's practical relevance and because of the availability 
of modelling data. The pump is designed to operate at 1800 rpm. Figure 7 shows the lumped-
parameter rotor model employed for the analysis. Tables I and I I summarize the rotor and radial 
AMB parameters as estimated from ref. [8]. Table III provides the computed damped frequency 
information for the following three cases, 

CASE A - Radial AMB's used as per ref [8]. 

CASE B - Angular Damping, CA = 2000 Nms/rad, 
implemented at bearings 1 and 2. 

CASE C - Angular Damping, CA = 2000 Nms/rad, 
implemented at the impeller. 

In cases B and C the appropriate radial AMB stiffness values are used, but radial damping has 
been removed. 
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FIGURE 7. MODEL OF PUMP ROTOR (REF [8]). 

Table I. Estimated Pump Model Parameters (ref [8]) 

Stat. Sect. Stiff Ext. Inertia Inertia 
No. Length (m) OD (m) Mass (kg) lT(kgm2) I, (kgm') 

1 0.05 0.1 12.35 0.077 0.154 

2 0.1125 0.1125 12.35 0.077 0.154 

3 0.05 0.1125 2.13 0.0047 0.0094 

4 0.05 0.1125 4.25 0.0094 .0.0187 

5 0.1 0.155 2.13 0.0047 0.0094 

6 0.2125 0.155 33.85 0.211 0.422 

7 0.2125 0.155 67.70 0.422 0.844 

8 0.1 0.155 33.85 0.211 0.422 

9 0.05 0.1125 2.13 0.0047 0.0094 

10 0.05 0.1125 4.25 0.0094 0.0187 

11 0.1125 0.1125 2.13 0.0047 0.0094 

12 0.2375 0.0875 0 0 0 

13 0.2375 0.0875 0 0 0 

14 0.075 0.0875 32.13 0.301 0.602 

15 0 0 32.13 0.301 0.602 

Table II. Estimated AMB Parameters (ref [8]) 

AMB AMB 

Frequency SUHhees •••nping 
(Mz) (N/m) (Ns/m) 

20 1.09E*7 2.79E*4 

47 1.50 £ • ? 2.55 E • 4 

89 2.07 E • 7 1.39E»4 

334 2.69 E + 7 134E*3 

Table III. Predicted Damped Frequencies for Pump Model 

Case A CaseB CaseC 
Mode No. damped 

freq.(cpm) 
log 
dec 

damped 
freq.(cpm) 

log 
dec 

damped 
freq.(cpm) 

log 
dec 

1 (lorw.) 1320 0.951 1319 0.465 1330 0.627 

(back.) 1363 0.941 1373 0.481 1386 0.633 

2 (forw.) 2764 1.661 2890 0.097 2916 0.069 

(back.) 2782 1.648 2912 0.102 2934 0.070 

3 (forw.) 6786 0.439 6613 0.451 7098 1.307 

(back.) 7177 0.435 7053 0.454 7569 1.040 

4 (lorw.) 19623 4.1E-4 17924 0.391 14811 4.820 

(back.) 21228 2.1E-4 19414 0.430 18774 5.180 

DISCUSSION OF RESULTS 

Referring to Table III computed modal frequency and damping values for case A agree fairly 
well with those presented by Chen [8]. The fourth shaft modes (forward and backward) are 
observed to be extremely lightly damped, in line with Chen's findings. The first three vibration 
modes are adequately damped. Of these modes the third (backward) mode exhibits least 
damping, having a logarithmic decrement of 0.44 which corresponds to an amplification factor 
(AF)of7.2. 

In contrast, when angular damping is introduced at both bearings (Case B) it is seen that all 
modes, other than the second, are adequately damped. Available damping for the first mode is 
about half that observed in Case A whilst third-mode damping levels have increased slightly. 
Most noticeable is the dramatic improvement in stability of the fourth mode (Log dec = .39 ; 
AF = 8.0), which was previously effectively undamped. 

Angular damping is seen to be even more effective when applied at the impeller (Case C) -
although in practice operation of the electromagnets in the process fluid and/or provision for 
additional sealing may rule out this option. The first mode is suitably damped whilst the third 
and fourth modes are now well-damped, having amplification factors of 2.5 (Log dec = 1.3) and 
0.8 (Log dec = 4.8), respectively. The second mode remains very lightly damped. 
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It is worth noting that, although not shown here, the addition of angular damping in this case 
leads to significant improvement in the damping of vibration modes higher than the fourth. 

The results here underline the differing modal-control influences of the radial and angular 
approaches. 

ELECTROMAGNET REQUIREMENTS 

Continuing with the above example, assume that angular control is implemented as shown in 
Fig. 8. Only derivative control is employed and linearization of the magnet current-force 
relationship might be achieved by incorporating square-root circuitry [9]. An ideal control 
circuit is considered, i.e.. it is assumed that none of the control components exhibit time-delays. 
The angular damping rate can be calculated from, 

C ^ K . C . r . d 

Also, each electromagnet exerts a moment of amplitude M where, 

M = F. r = K . i . r 
I 

Assuming this to be a damping moment the current i is given by, 

i= co.cA.e 

(2) 

(3) 

K . r 

For small shaft angular displacements, 

Kj = M-o • A . N 2 

G 

(4) 

Equations (2), (3) and (4) were used to obtain an estimate of magnet and control parameters 
based on the angular damping requirement of2000 Nms/rad. For peak current calculation it was 
assumed that shaft displacement at the sensors would be limited to 76 microns (3 mils) peak to 
peak at 1800 cyc/min. 
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The displacement transducers are assumed to have a sensitivity of 7.9 mV/micron (200 mV/ 
mil). The estimated parameters are as follows, 

Magnet leg cross-section = .045m x .045m 
N=150 ; G = 0.3xl0- 3m ; d = 0.2m 
r = 0.1m ; K.= 636N/amp ; Cv = 157 amp/m/sec 
Peak magnet current =1.5 amps 

The maximum flux density is computed as 0.95 Tesla which leaves little margin against 
saturation, but this is felt to be acceptable for the present analysis given some of the assumptions 
involved. Note that all magnet current is used for control purposes since no steady current exists. 
This should result in better utilization of the magnet core but increased eddy-current loss effects 
would need to be considered. 

Comparison of the control circuit parameters with those of Chen [8] shows that an increase 
in feedback gain would be required, in the case of angular control, due to the nature of the slope 
measurement. The computed feedback gain of 157 amp/m/s is equivalent to a gain of 330,000 
amp/m at 20,000 cyc/min which is approximately ten times that used by Chen. 

The magnet dimensions are fairly large but not excessive. However, further investigation of 
magnet heat-loss and control bandwidth-limitations will be required before specific conclusions 
can be drawn. 

It should be stressed that no attempt has been made to optimize the application of angular 
control in this case and the above calculations are intended only to enable a preliminary 
assessment of the proposed control strategy. 

Even so, the results at this stage indicate that practical implementation of angular control 
using electromagnets is a feasible proposition. 

CONCLUSIONS 

The concept of angular control has been introduced and assessed analytically on a simple 
flexible rotor system and on a full-scale pump rotor. Effective angular damping control of multi 
mode systems has been demonstrated. 

The ability of angular control to significantly influence shaft flexural modes, particularly on 
systems having low stiffness ratios, is compatible with the effective rigid-body control 
characteristics of present-day active magnetic bearings. It seems logical, therefore, to consider 
a combined radial/angular approach. In this way the rotordynamicist should have greater 
freedom in the selection of system parameters. 

Although an attempt has been made herein to generalize the results it is clear that the merits 
of angular control could only be properly judged on a case-by-case basis. 

Analysis of a pump rotor highlighted the ability of radial and angular control methods to 
influence the same vibration modes to differing extents. This underlines the complementary 
nature of the control methods. 

Implementation of angular damping control on a full-scale rotor using electromagnets looks 
to be possible. However, more detailed studies on the control-circuitry and electromagnet 
requirements will be required. 
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Nomenclature 

A = Magnet Pole Face, per pole (mJ) K = Stiffness Ratio = 1^ /K, 
Angular Damping Rate (Nms/Rad) Ki = Electromagnet Gain (N/amp) 

cr = Radial Damping Rate (Ns/m) L = Shaft Span (m) 

cv= Feedback Gain (Amp/m/sec) M = Electromagnet Moment (Nm) 
d = Distance Between Displacement Sensors (m) N = Magnet Coil Turns per Pole 
E = Young's Modulus of Elasticity (N/m 2) r = Magnet Moment Arm (m) 
F = Electromagnet Force (N) R = r /L 
Fd = Effective External Disturbance Force (Nm) X = Radial Displacement (m) 
G = Magnet Air Gap (m) a = Rotor System Receptance (m/Nm) 
i = Current (Amps) Ho 

6 
= Permeability of Air Gap = 4rc x 10-7(Web/am) 

I = Second Moment of Arae (m4) 
Ho 
6 = Shaft Slope at Electromagnet (Rad) 

K,= Shaft Stiffness = 48EI/L3 (N/m) 0) = Vibration Frequency (Rad/sec) 
K2 = Support Stiffness (N/m) 
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