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A B S T R A C T 

Active magnetic bearing applications in rotating equipment often require that the 
feedback sensor be separated axially from the magnetic actuator. The stability of the 
resulting closed loop system can be understood by examining the nature of the plant 
transfer function between actuator and sensor. In this work, i t is demonstrated that 
when the rotor has negligible damping, such transfer functions can have zeros in the right 
half of the complex plane, leading to very difficult stabilization and an inherent lack of 
robustness. This somewhat unexpected result is interpreted in terms of physical response. 

A computational approach is outlined for computing the zeros and validation is pro
vided by companson to the exact solution for a uniform beam. In addition, the forced 
response of a more complex rotor is examined, illustrating the physical significance of real 
zeros. 

I N T R O D U C T I O N 

Active magnetic bearings provide a very appealing mechanism for supporting shafts 
in rotating machinery. Their advantages are widely touted and include reduced parasitic 
power loss, elimination of lubrication systems, improved lifetime, higher stable.operating 
speeds, and better control of rotor dynamics compared to fluid film or rolling element 
bearings. One of the chief distinctions between active magnetic bearings and conventional 
passive fluid fi lm or rolling element bearings is the need for explicit feedback of the shaft 
position in order to determine the dynamic character of the bearing. In many cases, it is 
not possible to integrate the position sensor into the structure of the magnetic actuator 
and it must be displaced from the actuator along the shaft axis. This displacement, often 
referred to as sensor-actuator noncollocation introduces some important properties into 
the plant dynamics which substantially complicate feedback stabilization. 

The general properties of the noncollocation problem are easiest to understand when 
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N O M E N C L A T U R E 
A beam cross sectional area A'i actuator spring rate X vector of beam responses 
b input vector K l spring rate, nondim. y sensor output 
cT output vector K2 free end spring rate z axial position along beam 
E elastic modulus " 2 spring rate, nondim. a basis function amplitudes 
e unit vector M mass matrix P . nondimensionalizing factor 

f forcing function L beam length A eigenvalue 
G(s) plant transfer function N spatial solution, PDE nondimensional force 
H(s) controller transfer function P temporal solution, PDE *(*) Laplace transform of (f>(t) 
i s Laplace variable P mass density of shaft 
I x x • area moment of inertia t time 
K stiffness matrix w beam deflection 

tfte plant (rotor) has only one control input and only one sensor output. Typically, rotors 
will have at least two radial bearings so that the planar problem (neglecting gyroscopic 
effects) has at least two inputs and two outputs. However, if one of the bearings is treated 
as a simple spring, then the plant model becomes single input - single output (SISO). 
Such a system is illustrated in Figure 1. 

The stabilization problem is to find a filter, H(s), which transforms the output from 
the sensor into an appropriate controlling signal for the actuator so that the closed loop 
system is stable, ie.: all of its eigenvalues lie in the left half of the complex plane. Figure 2. 
illustrates the relationship between the plant model, G(s), and the feedback filter, H(s). 
The closed loop system transfer function is given by 

Gc l(s) = G(s) 
l + G(s)H(s) (1) 

It is well established [8, 4 that, if the poles of G(s) all lie on the ju> axis and all 
of the zeros of G(s) are interleaved with the poles in such a manner that exactly one 
zero lies between any pair of poles on either the positive or negative axis (a condition 
referred to as pole-zero interlacing) then the system is stabilized by any compensator 
H(s) whose phase lies between 0 and 1809 for all frequencies. Such interlaced systems 
are robustly stabilizable. On the other hand, if this condition is not satisfied then the 
controller dynamics must be very carefully matched to the plant dynamics in order to 
stabilize the system. This careful matching naturally implies a lack of robustness: small 
parametric changes in the plant may lead to instability of the closed loop system. 

•icy G(S) 

H(s) 

Figure 1: Rotor Schematic Figure 2: System Block Diagram 
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C O N T I N U O U S B E A M M O D E L Z E R O S 

The basic properties of the transfer function from actuator to sensor can be seen by 
considering a uniform beam with the actuator acting at the left end and a simple spring 
bearing at the right end. A similar model is extensively discussed by Spector and Flashner 
7] but for a moment actuator rather than a lateral force actuator and without the spring. 

In the following discussion, the magnetic actuator is assumed to add a destabilizing force 
proportional to the displacement, consistent with the usual linearized model found in 
the literature [2, 3, 5, 6]. Our purpose in presenting this model, which is only useful 
for very simple geometries, is to support the somewhat surprising conclusion that the 
transfer function for noncollocated systems has zeros on the positive real axis. A more 
useful numerical approach, based on a finite element model which is suitable for modeling 
complex geometries is presented in the next section. 

The beam deflection, w(z, i),can be modeled by the Euler-Bernoulli equation 
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which represent the moment and shear conditions at each end. 
To nondimensionalize, define 

w 
y = L ' x — L , 

(5) 

Kx = 
EL 

-Kx, K2 = jg-K,, m = 
EL 7(0 

Further, note that the elastic modulus, E, and second area moment, I x x , are constant for 
a uniform beam. After Laplace transformation, the resulting simplified nondimensional 
ordinary differential equation is 

0 < x < 1 (6) YXXXX + /?vy = o 

subject to the boundary conditions 

Y x x \ o = 0 , 5 ^ = 0 , (KXY + Y X X X ) \ 0 = <S>(S) , ( K I Y - Y ^ = 0 (7) 

If we assume that the solution to (6) is separable, then its solutions have the form 

Y{x,s ) = N{x)P{s) = a ^ ' P i s ) (8) 
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yielding the characteristic equation 

A4 +7?V=0 

which has four solutions for any given value of s: 

A = 7 { M , - 1 , - i } : 7 = /?(l + 0 v / 0 ^ 

Inversely, , 

v . s,= ±i 1

2 / l3 2 . • 

The solution can then be written, in the frequency domain, as 

Y(x,s) = {a^* + + aae"^ + a^"''7*} P(s) 

(9) 

(10) 

(11) 

(12) 

Values for a,- and P(s) are found in terms of $(5) by imposing the boundary conditions: 

(13) { a i a 2 a 3 a 4 } T = V ^ s ) { 0 0 -1 ' 0 } T | ^ 

where 

V(s) = 

1 - 1 

—e 
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The transfer function Y{x , s ) l§ ( s ) can be found, using Cramer's rule, as: 

y ( a v s ) _ det[iy(x,s)] 

$(3) det[V(s) 
(15) 

where 

W(x,s) = e< 

- 1 

e - 7 

- 1 -

( 7 3 _ K 2 ) e l " ( _ i 7 3 _ ^ ^ , 7 ( _ 7 3 _ K 2 ) e - 7 ( ^ 3 _ K 2 ) e - ! 7 

(16) 

The two matrices, V(s) and W(x,s) are the same except that the third row of V(s) 
(where the shear force enters) is replaced by the set of basis functions eA' x. 

The zeros of the transfer function occur at those values of s for which the numerator 
of (15) is zero. Note that the zeros (solutions of det[l4^(x, s)\ = 0) depend upon the 
sensor location, x, while the poles (solutions of det[V(.s)] = 0) do not. Also, note that the 
boundary condition at the left end (represented by Kx) has no effect on the zeros of the 
system. Thus, the destabilizing effect of the magnetic actuator, while altering the poles 
of the open loop plant, does not alter the zeros. 

If we ignore the spring at the right end (K^ = 0), the zeros at each end of the beam 
can be readily found from ' • 

detVK(s,0) = 0 det 14/(5,1) = 0 
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At the left end, it is convenient to express 7 as 

7 = 0.5(2a + b) - 0.5(6); 

where a and b are real. With this substitution, the zeros are the simultaneous solutions 
to 

tanh(a -f b) = tan a and tanh a = tan(a-f 6) (17) 

In the former relationship, da/db > 0, while for the latter, da/db < 0. Further, the largest 
upward displacement of the solutions to the former is 7r/4 while the latter move downward 
at most 7r/4. Thus, the largest relative displacement of the solutions is 7r/2. Since the 
solutions are all nearly TT apart (and always more than 7r/2 apart), there is no b for which 
the solutions "skip index" and realign. Therefore, simultaneous solutions exist only for 
6 = 0: 

tan 7 = tanh 7 (18) 

The first root is 7 = 0 and the remaining roots are slightly less than 7r/4 + nn where n is 
a positive integer. Thus, at the left end the zeros are 

5 = 0, ± i J 2 / P 2 « 0 , ± ; ( 7 r / 4 4-n7r)7/?2 n > 0 (19) 

The zeros of the transfer function at the left end all lie on the imaginary axis. 
In a similar manner, to find the zeros at the right end, it is convenient to express 7 as 

• 7 = a + (a + b)i 

where, again, a and b are real. With this substitution, the zeros at the right end are 
also given by the simultaneous solutions to (17). As before, this system of equations has 
solutions only if 6 = 0. In this manner, the zeros at the right end are 

5 = 0 , ± z ( ^ ) V / / ? 2 ~ ( ) , : F 2 ( 7 r / 4 + 727r)7/?2 n > 0 (20) 

These zeros all lie on the real axis. It is interesting to note that the magnitudes of the 
right end zeros are precisely twice the magnitudes of the left end zeros. 

The zeros of the transfer function for values of x lying between zero and one do not 
yield quite as readily to simple algebra, so a general solution is not presented here. In 
any case, they can be obtained numerically from det V(x,s) — 0. The important point to 
note is that the zeros always lie either on the real axis or on the imaginary axis and that, 
if 0 < x < 1, zeros can be found on both axes. Further, these properties are not modified 
by the presence of a positive spring, AC2, at the right end. 

F I N I T E E L E M E N T B E A M M O D E L ZEROS 

Continuous beam models based on partial differential equations provide useful insight 
to the fundamental mathematics of the transfer function zeros problem, but are not readily 
applied to real engineering analysis. Instead, the usual approach is to develop a finite 
element model of the rotor and study the properties of the model matrices. Such a model 
is based on the same partial differential equation as in the preceding section, but the 
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equation is essentially solved for each short axial section of the rotor subject to continuity 
conditions at each section interface. The advantage of such an approach is that it readily 
permits more complex geometries and the resulting models can easily be interfaced with 
more complex boundary conditions. 

The finite element form of the undamped rotor (beam) model has the general form 

M & t ) + K x ( t ) = b e j ( t ) y(t) = ce sx(t) (21) 

The vector x is the collection of displacements and slopes at the interface between each 
beam section. These interfaces are commonly referred to as.mass stations since the mass 
of the beam is generally treated as acting as particles at these points. The actuator 
force, / , enters the system through the ea vector and the sensor, y, measures the response 
through the es vector. These vectors are unit vectors with the element corresponding to 
the sensor or actuator location set equal to 1.0. The plant transfer function from the 
actuator to the sensor is found by taking the Laplace transform of these equations and 
solving for Y(t) in terms of F(t): 

Y(s) 
G(s) = ^ ) = b c e : [ s 2 M + K } - 1 e a (22) 

Using Cramer's rule to form the inverse yields 

de t [s 2 M + Aa , 
= be * , , £*1 (23) 

det [s2M + K) 

The denominator of this transfer function is independent of the sensor and actuator loca-
lions and forms the characteristic polynomial for the plant; its roots are the eigenvalues 
of the beam, or poles of the transfer function and they characterize the homogeneous or 
unforced solution to the differential equation. If M and K are. symmetric and positive 
semidefinite, then the poles of G(s) all lie on the imaginary axis, indicating that the 
natural motions of the beam are sinusoidal without decay. A significant exception to this 
occurs when K is symmetric but not positive semidefinite, as is the case when the model 
includes a magnetic actuator (which has a negative open-loop stiffness.) In this case, two 

of the eigenvalues lie on the real axis, disposed symmetrically about the origin. 
The numerator of the transfer function, formed by finding the cofactor of the (s,a) 

element (that is, strike the a t h row and s t h column) of the indicated matrix and compute 
the determinant of the resulting smaller matrix) depends explicitly upon the choice of s 
and a: the sensor and actuator locations. The roots of the numerator are the zeros of the 
transfer function and they characterize the particular or forced solution to the differential 
equation. These zeros are the solutions, A; of the generalized eigenvalue problem 

X n M } l S t a ] i ^ [ K ] [ S t a ] l t (24) 

It is important to note that, if [M][ S i a ] is singular (as it is for s / a), then the number of 
eigenvalues is not necessarily equal to the dimension of the matrix. 

As illustrated with the continuous beam model, these eigenvalues (zeros of the transfer 
function) can be either real or imaginary. When the sensor and actuator are collocated, it 
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is readily shown that all of the zeros are imaginary. 1 However, if the sensor and actuator 
are not collocated, then some of the zeros may be real. 

At first pass, it seems unlikely that such a system would have real zeros: they are 
expected to be associated with dissipation and yet the model has no dissipation mecha
nisms. However, the physical significance of real zeros can be understood by examining 
the general meaning of zeros. If the transfer function G(s) is written as a ratio of poly
nomials: 

then the ratio can be expanded and the inverse Laplace transform taken (ignoring initial 
conditions) to yield 

Assuming that / takes the form Fe X t , we have 

= F e ^ a i A ' " (27) 

If A is a zero of G(s), then by definition 

X > A ' = 0 => J > y w = 0 (28) 

If y is the sum of the homogenous and particular solutions: 

y = yh + y P = 0 ^ = ^ ( 2 9 ) 

then 
F ^ ^ A A ' ^ O (30) 

Assuming that none of the poles of G(s) coincide with the zeros of G(s), the particular 
solution Y p = 0 is zero. That is, y behaves as if it were unforced when the force eX t is 
applied. Since y is just the displacement of the beam at a specific point, it is not necessary 
that the particular solution for the entire beam be zero; only the solution at a specific 
point (where y is measured) must be zero. The particular solution to (21) for / = is 
given by: 

x = [ X 2 M + K ] " 1 (31) 

11 any element of this vector is zero, then the transfer function from the forced point 
(selected by e a) to the output point corresponding to the zero element has a zero at A. 

'This was demonstrated in the previous section using the continuous model. However, it is a general 
property of the M and K matrices, which are symmetric. When the same row and column are removed 
(sensor and actuator are collocated) the symmetry is retained. Further, the single element which might 
produce indefiniteness in the K matrix lies at the intersection of the removed row and column, so the 
reduced stiffness matrix is positive semidefinite, as can be shown easily from the definition of positive 
semidefinite matrices. This is sufficient to show that the zeros must all lie on the imaginary a.xis. 
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Figure 3: Poles and zeros for a free-free uniform beam 

E X A M P L E S 

The first example serves to compare the continuous model to the finite element model. 
The model is a simple cylindrical beam 102 cm long and 2.5 cm in diameter with elastic 
modulus equal to, 2.0 x 101 1' N / m 2 . The material mass density is taken as 7850 kG/m 3 . 
The magnetic actuator acts at the left end and the sensor can be moved to any position 
along the shaft in the continuous model and in 3.3 cm increments in the finite element 
model. 

Figure 3 shows the zeros c o m p u t e d b o t h us ing b o t h models when the r i g h t end of 

the beam is unconstrained. The circles mark the imaginary zeros of the finite element 
model, the crosses mark the real zeros, and the dotted curves mark the corresponding 
quantities for the continuous model. The poles of the finite element model are shown by 
the horizontal lines. The comparison is quite favorable, both for the real axis zeros and 
for the imaginary axis zeros. Note that, as predicted, the magnitudes of the real axis zeros 
with the sensor at the right end are in fact twice those of the imaginary zeros with the 
sensor at the left end. In addition, notice the cusp at x / L = 0.667 where the trajectories 
of a real and an imaginary zero intersect at zero. This point corresponds to the center of 
rotation of the free-free beam when a force is applied to the left end. 

Figure 4 shows the same result when the right end of the beam is constrained by a 
spring (8.8 x 106 N /m) . Again, the comparison is quite favorable except for the real zeros 
with large sensor - actuator separation. Apparently, the numerical conditioning of the 
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Figure 4: Poles and zeros for a uniform beam with a spring at x = L: K = 8.8E6 N / m . 

model was poor for the large separation cases, leading to numerical error in the eigenvalue 
computation. 

The second example illustrates a rotor with a more complex geometry. Here, the 
physical significance of real zeros examined. The rotor is a 0.64 cm diameter steel shaft 
20 cm long with three disks mounted to it . The disks are mounted 3.8 cm, 8.9 cm, and 
16.5 cm from the left end and have inertia] properties of m i . = 0.054, kG I X X t i = 5.34E-06 
kG-m 2; m 2 = 0.20 kG, / M , 2 = 3.52E-05 kG-m 2; and m 3 = 0.045 kG, / ^ = 2.67E-06 
kG-m 2 respectively. 

The rotor model has 33 mass stations: each intervening shaft segment is 0.63 cm 
long. A sensor is placed at the 13 t h mass station, 7.5 cm from the left end and a force is 
applied at the left end. The resulting transfer function from actuator to sensor has a zero 
at ±3855.38/sec. The associated forced response is shown in Figure 5. The response is 
largest at the point where the force is applied and goes to zero at z = 7.5cm and z = 18.5 
cm. 

D I S C U S S I O N 

Probably the most important point of this work is that the transfer function from 
an actuator to a sensor on an undamped flexible beam always has zeros on the real axis 
(and, hence, in the right half plane) when the sensor and actuator are not collocated. 
Clearly, such zeros substantially complicate the problem of stabilizing the system with 
feedba.ck. As the separation distance increases, these zeros make their way down the real 
axes toward the origin, increasing their influence on closed loop stability. 



Transfer Function Zeros in Noncollocated Flexible Rotor Models 251 

c 
o 

•H 
4-1 
O 

• <u 
rH 
M-l 
<D 
Q 
M 
O 

4J 
O 

•o 
0) 

m e 
M 
O 

0 .8 -

0.6 -

0 .2 -

- 0 . 2 
6 8 10 12 14 16 18 20 

P o s i t i o n Along Sha f t , cm 
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The implication is that, if rotors are truly undamped then they can not be stabilized by 
simple minded control algorithms such as proportional-derivative (PD) or proportional-
integral-derivative (PID) control. However, if the distance between sensor and actuator is 
small and the rotor has dissipation mechanisms moving its poles into the left half plane, 
then the effect of the right half plane zeros is negligible. This result is well known to 
experimenters whose test rotors work fine despite the instability of their linear models. 

In principle, it is possible to design a stabilizing compensator for the ugliest of systems 
with zeros in the right half plane. For instance, one could use sophisticated approaches 
such as state feedback with a Kalman filter to generate a ful l order controller. Such a 
controller would have at least as many poles as the plant model which could easily be 
forty or fifty. The drawback to this approach, setting aside the large order of the resulting 
controller, is that the controller will be obligated to deal strongly with the right half plane 
zeros. If the actual location of these zeros is not well known (as'it won't be) then there is 
no guarantee that the resulting controller will stabilize the plant. That is, the system will 
not be robust to plant variation. Further, no matter how large a model is used, there are 
always more unmodeled zeros on the real axis. Consequently, design approaches which 
are inherently sensitive to these right half plane zeros are unlikely to produce satisfactory 
controllers. 

How then, are engineers to determine whether their system will be stable when the 
sensor and actuator are not collocated? The answer seems to lie in better modeling of 
the rotor. One approach is to obtain reliable estimates of the beam dissipation, perhaps 
through modal testing or perhaps through improved material and assembly fit models. 
Another approach is to explore nonlinear beam models with an eye to determining an 
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acceptable degree of linear instability which yields limit cycles of acceptable size. 
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