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A B S T R A C T 
We propose the following terminology: a magnetic bearing (MB) is called "passive" if it 
is, from the point of view of its dynamical interaction with the supported body, "equiva
lent" to an (arbitrarily complex) interconnection of positive masses, positive springs and 
positive dampers. There are several well-known advantages of passive control (simplic
ity, granted stability in presence of certain unmodelled dynamics etc.). Our final goal 
is to quantitatively describe some limitations caused by the passivity constraint. As a 
first step in this direction we investigate a benchmark problem where the MB-supported 
body is a two-mass oscillator. We consider the requirement of asymptotic disturbance 
rejection at some given frequency UQ. Furthermore, the magnitude response around UQ 
should be sufficiently "flat". This paper shows that there is a bound on this "flatness" 
which cannot be surpassed by any passive bearing. However, if active bearings are al
lowed, this bound cancels and magnitude response around UJQ is allowed to be arbitrarily 
flat. 

1 I N T R O D U C T I O N 

The notion of passivity has been well established in electrical networks, control and sys
tem theory for a very long time, see references in [1]. Roughly speaking, passive systems 
are characterized by stability plus an energy flow condition (dissipation) related to the 
input/output behavior. Any (negative) feedback interconnection of passive systems is 
passive again, hence stable. This very important property of passive systems has many 
applications. 

Unfortunately, the above notion of passivity does not match the terminology used by 
those involved with magnetic bearings. For example, an ideal PD controlled magnetic 
bearing with sensor/acuator collocation is called "active" even if it should be called 
passive ih the above sense. But things get even worse: a permanent magnet bearing 
(which might be modeled by a negative spring) is called "passive" even if it ought to be 
called active in the above sense, since it might have a destabilizing property! 
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2 MYSTERIOUS WATERBED EFFECTS 

Any skilled control engineer is familiar with the following observation: suppose you wish 
to reduce the magnitude of some closed-loop transfer function in some frequency range 1 
by tuning the controller. Suppose you succeed in doing so, it is very likely that the 
magnitude response will rise in some other frequency range 2, see figure 1. A Waterbed 
is a fine illustration for this. In particular, high peak values of the magnitude response 
may appear in the case of harmonic disturbance cancellation at some given frequencies, 
see figure 2. Our final goal is a deeper understanding of the "waterbed effect" in the case 
of passively controlled systems. This goal lies beyond the scope of this paper; however, 
we will take some steps towards i t . 

3 P U R P O S E OF THIS P A P E R 

Consider a sinusoidal disturbance where the nominal value of the frequency is given, 
say Uo, but where amplitude and phase are not available. The actual frequency is only 
known with some accuracy. Furthermore, let us require asymptotic disturbance rejection 
at co0 in some closed-loop transfer function T(s) , i.e. T(iuJo) = 0, see figure 2. Then, 
a sufficiently flat magnitude response | r ( i a ; ) | around Wo is desirable because of small 
uncertainties of the. disturbance frequency. In the sequel of this paper, we investigate 
the flatness described by slope K := |T"(iwo)|, i.e. the derivative modulus at iuio. The 
purpose of this paper is to show that K cannot be arbitrarily small in the case of passive 
control. However, in the case of active control, we will show that K can be chosen to be 
arbitrarily small. 

FIGURE 1: WATERBED EFFECT ! 
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FIGURE 2: FLATNESS OF HARMONIC DISTURBANCE CANCELLATION. 

4 E X A M P L E 

The following example helps to explain the ideas. Consider a supported two-mass oscil
lator mi = m2 = c = 1, see figure 3. Let T(s) be the dynamic compliance of bottom 
mass m i . We are seeking a passive bearing such that the following requirements hold: 

• Disturbance cancellation at u>o, i.e. T(i<jjQ) = 0. 

• Low static compliance TQ := T(0). 

• Flat magnitude response |r(iu;)| around u>0, i.e. small slope K :— \T'(iu>0)\. 

Let us describe the bearing dynamics by its transfer function C(s) relating the bear
ing force to the velocity of top mass m2. A passive bearing leads to a positive real 
transfer function C(s). Recall: 

Def in i t i on [1]. Let C(s) be a rational transfer function with real coefficients. Then, 
C(s) is termed positive real if C(s) has no poles in the open right half-plane, and if 
$te(C(iu>)) > 0, for all UJ. Furhermore, any pole p = i u * on the imaginary axis must 
be simple and its residuum has to satisfy l i m ^ p {(s — p) C(s)} > 0. 

Bottom mass compliance T(s) and bearing C(s) are related by the following linear 
fractional map 

TU) = s C { s ) + (*2 + 1 ) m 
^ ; s(si + l)C(s) + 52(s2 + 2) { > 

Inserting the requirement T(±iu!o) = 0 in (1), an interpolation condition for bearing 
C(s) follows: 

C(±iuo) = ± i — ^ (2) 
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FIGURE 3: TWO-MASS OSCILLATOR SUPPORTED BY A PASSIVE BEARING. 
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Note that the right hand side of (2) has zero real part. There is a simple physical 
interpretation to this: bearing C is not dissipative at frequency u:0. 

Bearing C also has to eliminate the rigid body mode of the unsuspended two-mass 
oscillator, i.e. T0 = T(0) has to be finite. This implies one more interpolation condition 
for C(s): 

(7(0) = oo resp. cb := l i i n { s C ( s ) } ^ 0 (3) 

where q, denotes the static bearing stiffness. Note that the static bearing stiffness Q, 
"combines" with stiffness c of the two-mass oscillator, i.e. 

To = c-1 + c^1 = 1 + c; - i 
(4) 

For passive bearings we have the obvious bound To > 1 since Q, > 0. 

Now we propose a "special type" of passive bearing for the two-mass oscillator. I t 
consists of an arrangement of two masses 7713,7714, two springs 02,03, and one damper d, 
see left side of figure 3. The corresponding transfer function is 

C(s) = 
n ( s ) 
d(s) 

where d(s) = 7774 s 3 + d s2 + C3 s , 

n(s) = 7773074 s4 + d(m 3 .+ ?774) s
3 + (c3m3 + 02^74) s2 + d(c2 + c 3) s + C2C3 (5) 

We claim that by an appropriate "tuning" of the bearing parameters we may achieve 
harmonic disturbance cancellation, i.e. T(iu)o) = 0, at one arbitrarily given frequency 
CUQ. In fact, we obtain the following two conditions on the bearing parameters by a 
straightforward calculation: 

C3 = 7774 

c2 = (1 + ?773)u;o - 1 > 0 

(6) 

(7) 
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Let us try to use the remaining freedom of 5 — 2 = 3 paxameters in order to achieve low 
values for both static compliance TQ and slope K := |T"(iu;o)|. Note that static bearing 
stiffness cb equals C2. Consequently, (4) leads to 

To = l + c j 1 (8) 

A tedious manipulation.(insert (6) & (7) in (5), and (5) in (1), then differentiate at IUJQ) 

yields 
K = 2 (1 + ma + m 4 ) u 0 (9) 

Obviously, we have the bound K > 2UJ 0 which follows from (9) by letting m 3 ,m4 —» 0. 
However, small values of ms could lead to negative values of spring C2, see equation (7). 
By combining these two bounds it easily follows 

2 -
AC > max (—, 2u>o) (10) 

Finally, by combining (8), (7) and (9), where —> 0, we obtain the following interesting 
trade-off relationship: 

r° > ^ ; . («> 
Figure 4 displays equation (11) for a fixed value of UQ = 0.5. 

Conclusion: The above passive bearing setup does not simultaneously allow arbitrarily 
small values for To and n. Decreasing flatness slope n implies increasing static compli
ance TQ and vice versa. 

Example: The following example corresponds to the o mark in figure 4. Let us fix UQ 
to = 0.5. Furthermore let us require a static compliance of T 0 = 2. From (11) we 
have the bound K > 8. This corresponds to the flattest magnitude response around u>o 
for the above setup. Now, let us determine parameter values in order to come close to 
this bound. From (4) i t follows that C2 = 1, and (7) gives ms = 7. Choose m 4 small, say 
m 4 = Then, (6) yields C3 = ^ . Choose d = l . Finally, (5) gives the corresponding 
bearing transfer funct ion C(s) = (28s 4 + 452s 3 + l i s 2 + 65s + 1) / (4s 3 + 64s 2 + s) . From 

(1) we obtain the dynamic compliance of the suspended two-mass oscillator 

TU) = (4s2 + 1) (8s2 + 129s + 2) 
[ S ) 32s6 + 516s5 + 48s4 + 645s3 + 14s2 + 65s + 1 

Figure 5 shows the magnitude response \T(iu>) . We achieve a slope K := |T'(iu;o)| 
_ 129 _ 

16 
= 8.0625 which comes very close to the theoretical a priori bound K > 8. 

Relat ion to the "waterbed effect": Figure 5 shows two high magnitude peaks cor
responding with two weakly damped modes. In fact, i f we wish to come close to bound 
(11), see figure 4, two complex conjugate pairs of poles of T(s) approach the imaginary 
axis. In other words, low values of static compliance To and flat magnitude response 
K around the absorber frequency UQ imply a rise of magnitude response at some other 
frequencies. Thus, we are confronted wi th the waterbed effect. 
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FIGURE 4: ACHIEVABLE FLATNESS TRADE-OFFS. 
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5 A D E E P E R ANALYSIS 

The previous section raised a number of questions: 

• Bound (11) relates two quite different objects, namely static magnitude TQ and 
slope K of magnitude response around . What do To and K have in common? 

• To this point, we only considered a very special setup of passive bearing C. Are 
there other passive bearings that meet the same requirements? 

• Particularly: for which values of U;O,TO,K does there exist a passive bearing? Can 
we improve bounds (10) h (11)? 

• Figure 5 shows that peak value maxw \T(iu))\ may be very important. Could we 
somehow use the "freedom" of all passive bearings in order to reduce this peak 
below a prescribed bound? 

FIGURE 5: u Q = \ ,TQ = 2, K = ,peak » 5460 (!) 
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The last question will be left open as a challenge for future research. The remainder 
of this paper is devoted to answering the first three questions. 

It is well-known that the following map 

gives a one-to-one correspondence between positive real functions C(s) and bounded real 
functions F(s ) , i.e. stable functions with gain less or equal 1, i.e. < 1 for all w. 
Now, use the mapping chain T(s) i-> C(s) i—> F(s) in order to transform all requirements 
from T to F . From straightforward manipulations it follows: 

no) '= /i, ino)i = ft 
F(iu0) = f 2 , )F'(iu0)\ = Q2 (13) 

F(-iLJo) = -/2, \F'(-iu:o)\ = 02 

where h = -1, Q1 = 2 T Q - 1 , f2 = elV 

ZLOQ (1 - u 2 ) 

- 3u;g + 1 

2(wb/c - - 1) 
and g2 = a , , ( 1 4 ) 

Equation (13) is known as "Nevanlinna-Pick" boundary interpolation problem. In the 
appendix we compile known basic facts [2] such as the condition for the existence of 
solutions. • • 

Equation (14) shows what TQ and K have in common; they link with derivative moduli 
ft resp. Q2. Now, use (17) to build the corresponding (3 x 3) hermitian Pick matrix A . 
A depends on u;o,To and K . If A(wo,3o, K) > 0 there are passive bearings that achieve 
the requirements corresponding to u>o,T0 and n. After some tedious manipulations we 
came up with a 

big surprise: The definiteness analysis of vl(u>o, To, K) leads to the same bounds (10) 

& ( 1 1 ) ! 

In other words, the special passive bearing setup (5) investigated in the previous 
section plays an outstanding role among the set of all passive bearings because bound 
(11) cannot be improved. 

6 A G L I M P S E AT T H E A C T I V E C A S E 

In [5] active vibration absorber systems were investigated using observer theory. In [4 
active control of the two mass oscillator example has been examined, where i t turned out 
that arbitrarily low peak values max^ |T(iu;) | can be achieved, provided the controller 
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bandwidth is appropriately high. Therefore, it should not be surprising that if we require 
asymptotic disturbance rejection at UQ we can achieve arbitrarily low values of both To 
and K. In fact, the absorber requirements can easily be incorporated in the "model 
matching problem" [3]. The active case is much simpler than the passive one since the 
tough passivity constraint on C is replaced by the common internal stability requirement 
of feedback setup [P, C]. 

7 CONCLUSIONS 

Although passive control has some advantages such as robust stability in presence of 
certain modeling errors [6], some inherent limitations of passive control are shown in 
this paper. We considered the requirement of asymptotic disturbance rejection at some 
given frequency UJ0, where we examined the flatness K of magnitude response around 
UQ . In the case of passive control it was shown that there is a lower bound for flatness 
K. This inherent limitation drops out in the case of active control. We presented a 
two-mass oscillator benchmark problem where we explicitly derived the limitations of 
passive control. 
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A P P E N D I X : I N T E R P O L A T I O N 

The workhorse of this paper is "boundary Nevanlinna-Pick" interpolation. For the sake 
of completeness this appendix recalls basic facts on existence and parametrization of 
solutions. For proofs and further details refer to [2, pp. 462]. We are seeking stable 
transfer functions F(s) which have gain less or equal 1, i.e. |F(ia;) | < 1, for all w, and 
which satisfy a set of given interpolation conditions on the boundary of the domain, i.e. 

F{ iuk ) = fk , (k = l , . . . , n ) (15) 

\ F \ i u k ) \ = g k , (k = l , . . . , n ) (16) 

where s k := iu>k are n given points on the boundary, i.e. on the imaginary axis, and 
where 'f k are given complex function values of modulus 1, i.e. \fk\ = 1. Furthermore, 
the moduli g k of derivative values F ' ( i uj k) are prescribed. The existence of solutions 
relates on the definiteness properties of n x n "Pick-matrix" A := [A^ m ] defined by 

:= < s ' -Aem := -j se + sm (17) 
gi, e = m. 

Then a necessary condition for the above problem to have a solution is that A be positive 

semidefinite, and a sufficient condition is that A be positive definite. In particular, if no 
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constraint is placed on the values \F'(iu>k)\, we may take Qk to be arbitrarily large such 
that Pick matrix A is positive definite regardless of what the off-diagonal entries are. If 
A > 0 the set of all solutions is parametrized by the following linear fractional map 

F(s) = 
0 n ( s ) Q ( s ) + 9 l 2 ( s ) 

&2i(s)Q(s) + <9 2 2( 5) 

where Q(s) is an arbitrary stable function with gain equal or less than 1, for which 
02i(-s) Q(s) + 6>22(-s) has simple poles at the points Here 

0(3) = 
0n(s) ei2(s) 

02i(s) 622(3) 
is given by 

0 ( s ) = I - C 0 ( s i - A a ) ' 1 A ' 1 C* J , where 

and J = 

Co = 

1 0 

0 - 1 

f l • • • f n 

1 . . . 1 
, A) = 

0 
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