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A B S T R A C T 

This paper describes an active control of bending vibration in a magnetically suspended 
flexible rotor containing a large disc at the center. The rotor is modelled as an elastic 
beam possessed of large rotary inertia effect by using Finite Element Method: Active 
control effect is expressed on the basis of modal cost analysis. The rotor without a 
large disc can be controlled by two magnetic forces together with almost colocated 
displacement sensors. On the contrary the rotor with the disc has definitely distictive 
mode shape at the second and the higher mode. In order to furnish with sufficient active 
control effect the t i l t signal of the. disc must be apphed to the feed back cotrol system. 
This prediction by the analysis was verified in the measurement of the stationary rotor. 

1 I N T R O D U C T I O N 

We should overcome the spill-over problem for controling the bending vibration of the 
flexible rotor suspended by magnetic bearing, since the elastic vibration has infinite 
degree of freedom. Some designing methods for the active control of the vibration were 
proposed 1 "" 6 ) , a ssuming the co loca t ion o f the sensor a n d the magne t i c r e a c t i n g force . 

The elastic vibration in the flexible rotor was modelled conventionally as the bending 
vibration governed by the continuously distributed mass and bending stiffness. This 
modeling is adequate as far as the rotary inertia of the largest mass such as disc is 
small compared with translational inertia. But the effect of the rotary inertia should 
be considered for the flexible rotor with a large disc7), because the effect affects the 
eigen mode and then the feasible control strategy should be taken correspondingly. The 
flexible rotor we are treating has a large disc in the center and is supported by the 
magnetic bearings at the upper and lower end as shown in Fig.2. The mathematical 
model is introduced for the elastic motion of the cross sectional center along the axis of 

Sadao'Akishita and ^Tomonori Morimura, Dept. of Mechanical Engineering, Ritsumeikan University, 
Kita-ku, Kyoto 603, Japan 

203 



204 STABILITY AND MODELING II 

the rotor, in which the dynamics of the rotation prevails. Finite Element Model (FEM) 
is introduced to the rotor for the analysis of the control system. Modal cost analysis8^ 
is apphed on the basis of FEM for finding the most effective control strategy. The 
location of the sensors for the feed back control is examined for the stationary rotor. 
The experiment is conducted to verify the analysis on the effect of the rotary inertia of 
the disc. 

2 A N A L Y S I S 

2.1 Mathematical Modelt 
A flexible rotor containing a large disc in the center is treated as an axi-symmetric 
beam in this paper. As shown in Fig . l , z-axis is defined along the axis of rotation with 
angular velocity f2,where z-axis coincides with the axis of symmetry in case of f i = 0 
and it; = 0. The elastic deflection of the rotor is described with the position of the cross 
sectional center w(z) = (w x (z) , w y (z)) in the O — x ,y plane. Generally the slope of the 
deflection curve at the point z can be written 

M ^ l = *(,,t)+«,.«) (i) 

where y>(z,*) is angle of rotation due to bending and f3(z,t) is angle of distortion due to 
shear. But, (3(z,t) is neglected in this paper, for the effect of shear is small compared 
with that of bending. i ) (z , t ) has two components; i()(z) = (w x (z) ,w y (z)) ,where prime 
means the derivative of z. The boundary condition at both ends of the rotor mean free 
of moments showing as 

M x = EIip' x — 0 or w x = 0 at z = z u and z; (2) 

My = Elijjy = 0 or w'y = 0 at z = z u and zi (3) 

where M x and My mean bending moment along aj-axis and y-axis respectively, E I ( z ) is 
bending stiffness of the cross sectional area, and z u and z; mean the z positions of the 
upper end of the rotor and the lower end of the rotor respectively. The equations of 
elastic motion in the projection of the rotor to the O — x, z plane are presented as 

m(w x - 2Uw y) = p x (4) 

r n k 2 j , x - ^ ( E I i > ' x ) + m U k ^ y = 0 (5) 

where dot means the derivative of time, k 2 is the square of the radius of gyration around 
x and y axis, k j is the square of the radius of gyration around z axis, and p x is the 
external shear force along x axis. The similar equations in the projection to O-y, z plane 
are presented as 

m(wy + 2Qw x) = p y (6) 

t New FEM model of flexible rotor was published very recently by Gmur,T.C. and Rodigues,J.D. 9 ) 



Active Control of Bending Vibration in Magnetically Suspended Flexible Rotor 205 

m k % - ^ ( E I i > ' y ) - m n k ^ x = 0 (7) 

where p y is the external shear force along y axis. The integral forms considering the 
boundary conditions are presented as 

r U { m { w l - 2nw x w y + k2ij>l + k 2

zni> xi> y) + - E J ^ } dz = f ^ p ^ d z . (8) 
J z, J zt 

r {m(wl + 2nw yw x + k 2 r t -k 2

znj> yi> x) + EIj>' y

2}dz = fpyWydz (9) 

2.2 F E M Equations of Flexible Rotor 

The elastic deflection of the rotor with a large disc is described with Finite Element 
Method in the paper. The elastic deflection variables are defined at (ri+ 1) node points 
of n segments of the rotor with vector q, 

q = [<zi r,---.<Zn T

+i]
T ( io) 

q, = [w x t , lo i> x l , l l i> ' x l ,w y i , loifyitlfy'yi], ( i = 1, • • •, n + 1) 

where l 0 = z u — Zj. Then FEM equation is described as follows, 

Mq + Gq + K q = f (11) 

where M is mass matrix and K is stiffness matrix. G is skew-symmetric matrix caused 
by Coriolis force and gyroscopic moment. / is the generalized external force including 
the external shear force. 

For a non-rotational rotor FEM equation is simplified as 

M ^ + K r t = f x (12) 

where My and K i are mass and stiffness matrix of a non-rotating rotor. The vector 
var iab le q i n E q . ( 1 2 ) con ta ins on ly h a l f o f componen t s i n E q . ( l l ) , since the componen t s 

along x axis are common in those along y axis for a non-rotational rotor. We are 
interested in the transfer function from the control force of magnetic bearing to the 
elastic deflection of rotor, which is governed by the eigen mode of FEM equation. As 
G matrix in E q . ( l l ) is affected by the rotational speed ft, eigen mode characteristics of 
flexible rotor vary with 0. The bending vibration of flexible rotating shaft is clarified 
by solving E q . ( l l ) for each of the rotational speed. But what we are interested in is the 
large rotary inertia effect of the disc. The basic characteristics of the effec are retained 
in the behavior of stationary rotor. Therefore we focus our analysis on Eq.(12) in the 
study, f i in Eq.(12) is the generalized force vector composed of 3(ra + 1) components. 
For magnetic bearing the external forces exerted on the rotor are magnetic supporting 
forces represented by the force vector u composed of m descretized shear forces as shown 
by 

u = [ P 1 , - - , P r a ] . (13) 
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Then / j is expressed as follows with matrix B that assigns Pi to the corresponding node 
point. 

f \ = Bu, B : 3 ( n + l ) x m (14) 

3 E S T I M A T I O N O F E F F E C T O F V I B R A T I O N C O N T R O L 

Though the damping effect of the rotor structure is neglected in the above FEM equa­
tions, the damping effect term Dq should be added to Eq.(12), for the rotor actually 
retains i t even a little. 

M 1q + Dq + K r f = Bu (15) 

where D is damping matrix and is assumed to be related with M i and Kx as D = 
a M i + (3Ki. The equation of the sensor signal is presented by the deflection vector q 
and its time derivative, 

y = Pq + Rq (16) 

where P and iZ matrices assign the sensor signals to the deflection and the vibrating 
velocity of the rotor at the sensor node points. 

Modal cost analysis8^ is applied for estimating the effect of the active control to 
bending vibration in the flexible rotor. So, the mode-decoupled form of Eq.(15) is 
introduced. The transfer matrix $ composed of the eigen vectors of 1 to k-th order is 
correlated with matrices M i and K i as follows, 

^ M a * = J, ^ K i * = $ J I > $ = 2CS 

where S and £ are defined as 

S = diag.(u;i,---,uk), (. = diag.{(i, • • •, (k) 

2CS = diag.(2CiUu-'-^CkUk) 

The vector q is transfered to x by using $, S and £, 

(17) 

(18) 

. q 

where A r and A r are defined as 

Ac = -cs + jEU-c2)", Ac = -Cs- ;-s(i-c 2)* •2\k 

(19) 

(20) 

where j means the imaginary unit. Applying column vector x of As-th order, Eqs.(15) 

and (16) are transfered as follows 

x = 
O — I 

0 X + I 
( A c - A c ) - ^ T B u 

y = [ P * + i?$A c , P * + RSAjse 

(21) 

(22) 
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where I is the identity matrix of k-th order. Cost function V of output signal y is 
introduced as follows 

/

oo 
y'Qydt . (23) 

0 

where asterisk means to evaluate y by the transposed conjugate of the original complex 
vector, and Q is the weighting matrix assumed as semi- positive definite. Modal cost is 
defined as modal component of cost function V in the case where the system is excited 
by impulse input. We evaluate input u by covariance matrix U, i-th diagonal component 
of which is represented as follows by the impulse of strength s, 

U = diag.(---, s • ,•••) 

When we define z'-th column of matrix P $ + i2$A c as c t, cost function V is rewritten 

by 

\ v = J : IXU X - C ^ (24) 
where asterisk means to evaluate by the transposed.conjugate of the original complex 
vector again. X i j (1 < i , j < k) is the component of i-th row and. j - t h column of the 
covariance matrix of x, which are derived by solving the equation of the covariance 
matrix. We assumed above that the damping effect was very small, then the following 
approximation is valid, 

c,«h_^!, v,.^. ( 2 5 ) 
2u;t 

Henceforth the following relation is justified. 

X i i > \ X i j \ , " i ^ j , ( 2 6 ) 

We should add that X t , is equal to X t + k i l + k . r Finally cost function V is rewritten mode 
by mode with the equation 

where 6* is defined as the i-th row vector of (A c — A c ) _ 1 $ r 5 , and 6* is defined as its 
transposed conjugate. . 

4 R E S U L T O F C A L C U L A T I O N A N D E X P E R I M E N T 

4.1 Object of Investigation 

The schematic configuration of the magnetically suspended rotor we are investigating 
is shown in Fig.2. The rotor cotaining circular disc of 150^ x lOOmm in the center are 
supported vertically by magnetic bearings at the upper and lower ends. The configura­
tion of the disc is varied to such shape as illustrated with dotted line. The diameter of 
the smaller disc is 42mm and the moment of inertia of the disc is decreased drastically. 
The rotor is actively controlled in the radial four axis motion by the upper and lower 
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radial magnetic bearings, and in the vertical motion by the axial magnetic bearings. 
The radial displacement sensors locate at shifted axial position from the corresponding 
magnetic reaction point. So, the colocation condition between the actuators and sensors 
is not strictly realized. 

4.2 The Result of Calculation 
The eigen frequencies and the corresponding eigen mode shapes of bending motion are 
calculated on the basis of FEM mentioned at section 2.2. The rotor is divided into 24 
blocks both for the case with the large disc and for the case without that. Figure 3 (a) 
and (b) illustrate the eigen frequencies and the mode shapes from first to fourth mode 
for both cases. The eigen frequency differs largely from each other. The mode shape is 
similar in both at first and second mode, where we should note that the displacement 
at the disc position (the symbol S7 is marked in the figure) is definitely zero in the case 
with the disc while it is finite in the case without the disc. Actually the mode shape 
differs largely in both at third and fourth mode, then the effect of the rotary inertia 
of the disc is remarkable for the case with the disc. We are calculating the modal cost 
mentioned at section 3 about these modes. The control inputs are the radial forces 
by the magnetic bearings and the outputs are fed by the corresponding displacement 
sensors in the calculation. Q = 0.003, st = 1 ( i = 1, • • • , & ) and Q = I are assumed 
there. Figure 4 shows the modal cost for the case without the disc. Abscissa means the 
frequency of the mode in the figure. The value of the cost is normalized by the largest 
cost hereafter. The second mode has the largest cost and the cost decreases generally 
with the mode number. Figure 5 shows the modal cost for the case with the disc. We 
can find that the second mode has definitely small cost compared with the first and 
the third mode on the contrary. This means that the active control by the magnetic 
bearings cannot govern the sensor output signal of the second mode, because the slope 
of the deflection curve of the flexible rotor prevails at the second mode shape but the 
deflection itself does not prevail as mentioned above. This tendency exhibits also in the 
transfer function from the control force by the magnetic bearing to the corresponding 
displacement at the closest sensor position. Figure 6 shows the transfer function of the 
rotor without the disc, and Fig.7 shows the transfer function of the rotor with the disc. 
The gain at the second mode peak decreases considerably for the rotor with the disc, 
while the gain at the second mode peak has the same order magnitude as the other 
mode peaks for the rotor without the disc. In order to improve the controllability to the 
second mode the slope signal of the deflection should be utilized. Figure 8 shows the 
improved modal cost for the case with the disc, where the t i l t signal of the disc is fed 
to the output. The modal cost of the second mode increases remarkably (see Q symbol 
in Fig.8) compared with the cost in Fig.5. 

4.3 The Result of Experiment 
As mentioned above main objective of the paper is to clarify the effect of the large 
rotary inertia of the disc for the stationary rotor. The experiment is confined to the 
stationary rotor. The accuracy of the calculation is verified by the measurement of the 
spectrum of the free bending vibration in the rotor without the disc suspended by the 
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magnetic bearings as shown in Fig.9. The first to third mode frequencies coincide almost 
with that of calculation (%2Hz, 29ZHz, blSHz respectively) in the figure as shown by 
the number (1) to (3). PID controller is applied for the magnetic suspension systems, 
assuming the approximated colocation condition of the sensors and the actuators. The 
magnetic suspension experiment was conducted for the rotor with the disc. Figure 10 (a) 
shows the spectrum of the free bending deflection in the rotor with the disc suspended 
by the magnetic bearings, where only the deflection signal of the rotor was utilized in 
the feed back control of the suspension. The marked peak is found at 135Hz that is 
nearly equal to the calculated second mode frequency 137Hz. When the disc tilt signal 
was fed to the suspension control force, the second peak disappeared in the spectrum 
as shown in Fig.12 (b). The prediction from the modal cost analysis was proved by the 
measurement. 

5 C O N C L U D I N G R E M A R K S 

F E M analysis was conducted on the active control of the bending vibration in the 
flexible rotor with the large disc. The effect of the rotary inertia of the large disc in 
the center of the rotor was predicted at the second and the higher eigen mode. The 
modal cost analysis predicted that the feed back control utilizing the bending deflection 
signal could not govern the second mode vibration, and that the bending vibration of 
the second mode could be improved by utilizing the tilt signal of the disc to the control. 
The analysis was verified at the second mode vibration by the measurement. 
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