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A B S T R A C T 

Magnetic bearing has some stability problems at high speed rotation such as gyroscopic 
and inductive coupling effect. In this paper, high speed rotor supported by anisotropi-
cally controlled magnetic bearings is analized, and damping property and stable region 
are calculated by using root locus diagram. From the analysis, anisotropical controller 
stabilizes the inductive coupling effect drastically. It sometimes affects adversely to the 
gyroscopic effect. 

This idea is applied to a 3 mass flexible rotor supported by 2 magnetic journal bearing 
systems, and its capability is tested. 

I N T R O D U C T I O N 

The electromagnetic bearings have attractive characteristics such as cleanness and 
low drag torque, and their application has been gradually increasing. In order to wide 
application, however, high speed stability should be established. 

Analog controlled magnetic bearings have been widely used to support the rigid rotor 
[1],[2].. Recently, digital controller has been investigated because of their flexibility and 
capability of high level control. Hisatani reported 1 DOF digital magnetic bearing [3]. 
The authors also reported a stabilizing technique of high speed journal magnetic bearings 

[4],[5]-. , 
High speed instability of the rotor are induced by two kinds of coupling effects: gyro­

scopic" effect and inductive force. They sometimes affect adversely to the system stability 
when rotor runs at high speed. Usually, gyroscopic effect never makes rotor unstable. 
Increasing the rotating speed, however, it changes the duplicated poles, one to high and 
the other to low frequency. If the controller has an integral (I) operation, the low fre­
quency pole becomes unstable. More harmful effect is the inductive coupling. One of the 
duplicated poles moves to the right in s-plane, which means unstable. To overcome this 
difficulty, cross feedback technique has been introduced [4],[5]. However, the controller 
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becomes very complicated. 
This paper describes the damping property of rotor supported by anistropically con­

trolled magnetic bearings. Oil film journal bearing is usually made anisotropic in order 
to avoid oil whips. Anisotropically controlled magnetic bearing can be realized simply by 
changing proportional feedback gains for each direction. 

In this paper, high speed rotor supported by anisotropically controlled magnetic bear­
ing is analized, and damping property and stable region are calculated by using root 
locus diagram. From the analysis, anisotropical controller stabilizes the inductive cou­
pling effect drastically. However, it affects adversely to the gyroscopic effect. Hence it 
is recommended that the feedback gains are adjusted up to 50% difference. This idea is 
applied to a 3 mass 2 journal bearing rotor, and its capability is tested. 

T H E O R E T I C A L C O N S I D E R A T I O N 

In order to analize the stability of rotor supported by anisotropic magnetic bearings, 
let us consider a simple rigid,rotor. Then this idea is extended to 3 mass flexible rotor. 
They are assumed to have the gyroscopic and inductive coupling effects. 

Inclined Mode of Rigid Rotor 

A rigid rotor and its coordinate system are shown in Fig. 1. For simplicity, the rotor 
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Fig. 1 Configuration of Rigid Rotor 
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is assumed not to move in z-direction. It rotates at a constant speed f l around z-axis. 
The translational and the rotational motions of the rotor in x, y, 8X and Oy directions are 
written in the following equations. 

mx + KEny = f 1 - f 2 + h - f 6 = fx (1) 

my - KEnx - f 3 - f 4 + f j - f 8 = f y (2) 

J8X + j P n6 y + PKEney = i f , - i f 3 + i f 7 - i f 8 = TX (3) 

j 0 y - j P n 0 x - i 2 K E n 0 x = i f , - i f 2 - i f , + i f 6 = T y (4) 

where m is the mass, J is the moment of inertia and Jp is the polar moment of inertia of 
the rotor. Jp f l is so called gyroscopic moment and K g is the inductive force coefficient. 
This inductive coupling affects adversely to the rotor stability. In order to avoid this effect, 
it is recommended to use the laminated plates. However, in such a machine in which the 
induction motor is installed in the shaft, this inductive coupling force is generated by the 
motor. 

The equations of the translational motion of the rotor (1), (2) are the special case of 
the equations of the rotational motion (3) and (4) by neglecting the gyroscopic moment 
term Jpf l . Therefore, the equations (1) and (2) are involved in the equations (3) and (4). 

Suppose that the magnetic bearing forces T X and Ty are generated from the propor­
tional and derivative (PD) feedback, 

T X = - K p x 9 x - K D x 9 x (5) 

Ty = —KpyOy ~ KpyOy (6) 

where K p x and are the proportional feedback gains for x and y directions, and K D x 

and K^y are the derivative feedback gains for x and y directions, respectively. Let us 
transform these equations using Laplace operator and K e = 1 2 K E , then we have 

(Js 2 + K D x s + K p x ) 0 x + ( JPS + K t )Sie v = 0 (7) 

-(Jps + K e)Sl9 x + (Js 2 + KDyS + K P y)9 y = 0 (8) 

From these equations, the characteristic equation of this system can be written by 

(Js 2 + K D s 3 + K p x ) ( J S

2 + K D yS + K P y) + (Jps + / C ) 2 0 2 - 0 (9) 

By drawing the root locus diagram of this characteristic equation, let us analyze the 
system stability. Fig.2.(a) shows the root locus with equal positional feedback gains 
(K Vx = Kpy)- Without velocity feedback (/^Dx = Koy = 0), double roots for 0X and 
0 y directions are located at the cross mark on the imaginary axis. By increasing the 
gyroscopic effects, one of these roots travels to high frequency (foward precision) along 
the imaginary axis and another to low frequency (backward precision), respectively. This 
system, however, becomes unstable only when gyroscopic effects and integral feedback are 
associated together [2], [4]. 

On the other hand, the inductive effect K e£l moves one of these double roots to the 
left (stable region) along the dashed line and another to the right (unstable region) of 
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the s-plane. Then the inductive effects are very harmful for the magnetic bearings-rotor 
system. Therefore, it is recommended to use the laminated plates [3]. 

Next, let us consider the case in which the positional feedback gains of each directions 
of the bearing are different ( K v x ^ K p y ) . The root locus is shown by the solid line in 
Fig.2.(b). Because of the different stiffness, roots on the imaginary axis are located at 
the different frequency. By increasing the gyroscopic effect, the higher root moves toward 
higher, and the lower root travels toward lower frequency, respectively. 

On the other hand, two different roots on the imaginary axis travel closer each other 
by the inductive effect. Then they coincide and one of these roots moves to the left 
and another to the right of the s-plane. Therefore, it is respected that the system with 
different position feedback gains is more stable than one with the same gains. 

If velocity feedbacks ( K D X , Koy) are added, the roots, both in Fig.2.(a) and (b), travel 
along the dash-dot lineŝ , then move along the thin dotted lines. They travel similar but 
include the damping effect. 

J P D 

. . . 

a . KPX = K.f b . K p x * K t 

Fig.2 Root locus of Rigid Rotor 
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Flexible Mode of 3 d i sc-2 bearing System 

Next, let us consider the analysis of the flexible rotor. The system is consisted of 
flexible shaft with three discs and two magnetic bearings. The schematic diagram is shown 
in Fig.3. The equations of motion of PID controlled system are written in equations (10) 
and (11). 

. M X + f t J p Y + K X = - K p X X - K I x J X d t - K D x X - K E f t Y (10) 

M Y - fiJpX + K Y = - K p X Y - K i y J Y d t 4- K D y Y + K E n X (11) 

The second terms of the left hand side of the above equations denote the gyroscopic 
effects. The first, second and third terms of the right hand side mean the P, I and 
D controlled forces, respectively; where Kp, K j , K D are the proportional, integral and 
velocity feedback gains, respectively. The fourth terms are the inductive effects, where 
K E is the inductive coefficient. 

Now let us consider the root locus of the P D controlled flexible rotor-bearing system 
which are affected by the gyroscopic and inductive effects. The system is analyzed by a 
numerical eigenvalue subroutine and the resulting root locus of the lower 3 modes of the 
P D controlled flexible rotor is shown in Fig.4. 

Fig.4.(a) is the root locus of the system when the feedback gains are the same (Kpx = 
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Fig.3 Configuration of Flexible Rotor 
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K v y = IQkN/m, K Q = ION s/m). In the diagram, the roots travel along the solid line 
when K p increase, while the roots travel along dash-dot line with increasing K D - When 
the rotating speed of the rotor is zero, the roots of the first, second and third mode are all 
double roots for x and y directions, respectively, because the stiffness is same in horizontal 
and vertical directions. As the rotating speed increases these double roots are separated 
into two roots. In case of P D control, these roots do not move into unstable region with 
only the gyroscopic effects as shown by the dash-dot-dot line. But the inductive coupling 
effect moves one of the double roots of each mode to the right as shown by the dotted 
line. The stability limits of rotational speed are 2200 rad/s at the first mode, 3000 rad/s 
at the second mode and 5300 rad/s at the third mode. 

Fig.4.(b) shows the root locus when the positional feedback gains are increased ( K p x = 
Kpy = 24:kN/m), and the velocity feedback gains are the same ( K D = lONs/m). The 
curves of the root locus are similar to those of Fig.4.(a). In this case, the stability limits 
of rotational speed are increased to 2400 rad/s at the first, 3700 rad/s at the second and 
5500 rad/s at the third mode, respectively. The root locus shows that increasing stiffness 
expands the stable regions slightly. 

The root locus of the flexible rotor supported by the anisotropic bearings is shown in 
Fig.4.(c), where the positional feedback gains in x and y directions are different (A'p^ = 
l 6 k N / m , Kpy = 24:kN/m, K p = lONs/m). Because of the different stiffness, the roots 
of each mode locate first at the different position. These different roots of each mode 
approach each other until they coincide, then one of the roots of each mode moves to the 
left (stable) and .another to the right (unstable) in the s-plane. Therefore, the roots travel 
longer than thos in the case of same positional feedback gains in Fig.4.(a). The stability 
limits of rotational speed are 3500 rad/s at the first, 4400 rad/s at the second and 6100 
rad/s at the third mode, respectively. 

By comparing Fig.4.(c) with Figs.4.(a) and 4.(b), the stable regions can be expanded 
by increasing the bearing stiffness. However, changing the positional feedback gains 
slightly expands the stable region more drastically than increasing the stiffness. From 
the analysis, anisotropic bearing has a great capability of stabilizing the instabili ty of the 

flexible rotor caused by the inductive coupling effects, especially when the damping of the 
system is low. 

Next, let us show the root locus of the P I D controlled flexible rotor as in Fig.5. Be­
cause of the phase lag of I operation, the lower roots of the duplicated roots of each mode 
move to the unstable region with not only the inductive effects but also the gyroscopic 
effects, when the rotating speed increases. All of these roots are located more closely to 
the imaginary axis than the case of P D controller, hence these roots seem to be easily 
destabilized. 

Fig.5.(a) shows the root locus when the positional feedback gains are equal ( K p x = 
Kpy = 16kN/m, K D = lONs/m, K j = lON/sm). The stability limits of rotational speed 
by the gyroscopic effects are 7800 rad/s at the first and 10000 rad/s at the second modes, 
respectively. In this case, the roots at the third mode does not move to the unstable 
region. On the other hand, the stability limits of the inductive effects are 400 rad/s at the 
first, 1900 rad/s at the second and 4600 rad/s at the third mode, respectively. Compared 
with the case of the P D control, the stable region is largely reduced. 

Fig.5.(b) shows the root locus when the position feedback gains are Kp X = K p y = 
24:kN/m and other parameters are the same in case of (a). This also shows the same 
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tendency as the case of (a). The stability limits of rotational speed by the gyroscopic 
effects are 1900 rad/s at the first and 11200 rad/s at the second modes, respectively. And 
the stability limits of the inductive effects are 200 rad/s at the first, 2300 rad/s at the 
second and 4600 rad/s at the third modes, respectively. By comparing with the case 
of (a), the instability caused by the gyroscopic effects is not stabilized, but is stabilized 
caused by the inductive effects, by increasing the stiffness. 

Fig.5.(c) shows the root locus when the position feedback gains are different (Kp X = 
IGkN/m, K P y = 24:kN/m) and the other parameters are the same. The duplicated poles 
are separated by the different stiffness. The stability limits by the gyroscopic effects are 
8300 rad/s at the first and 10900 rad/s at the second modes, respectively. But the stability 
limits by the inductive effects are largely expanded to 2700 rad/s at the first, 3400 rad/s 
at the second and 5200 rad/s at the third modes, respectively. 

By comparing the case (c) with the case (a) and (b), the anisotropic bearing which 
can be easily realized by only changing the positional feedback gains in x and y directions 
improves the inductive effects, drastically. 

C O N C L U S I O N S 

Dynamics of the rigid rotor and the flexible rotor supported by the magnetic bearings 
are analized. The following results are obtained. 

Gyroscopic effect never destabilizes the rotor supported by P D controlled magnetic 
bearings. However, it destabilizes the rotor when I operation is added to the P D con­
troller. 

Inductive coupling effect is very harmful to the stability of the rotor. Even magnetic 
bearings are made of laminated sheet, this inductive coupling effect may be generated by 
the induction motor. 

The isotropic bearing system, which can easily be realized only by changing the po­
sitional feedback gains, has a great capability of expanding the stable region, especcially 
when the damping of the rotor-bearing system is low. 
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